K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Where is "z"?

20 tháng 3 2019

z ở đâu thế bạn ơi

sửa giùm đề nha

chúc bn hok tốt

16 tháng 6 2016

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)

Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)

a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)

\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)

b) Từ (1) => x + z = 2y 

Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)

Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)

=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM

17 tháng 6 2016

Bạn đinh thùy linh trả lời rõ ràng hơn được ko 

30 tháng 3 2015

   Đúng thì like phát nha

Vì (1-x)2 >=0; (x-y)2 >=0; (y-z)2 >=0

Mặt khác (1-x)2+(x-y)2+(y-z)2=0

=>  (1-x)2=0         =>    1-x=0

      (x-y)2=0                 x-y=0

      (y-z)2=0                 y-z=0

=>   x=1

       y=x

       z=y

=>x=y=z=1

Vậy x=y=z=1

1 tháng 4 2018

Ta có : 

\(\left(1-x\right)^2\ge0\forall x\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y-z\right)^2\ge0\forall y;z\)

\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)

26 tháng 4 2019

Ta có: \(\hept{\begin{cases}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}\forall x\inℝ}\)

\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\1-y=0\Rightarrow y=1\\1-z=0\Rightarrow z=1\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\)

P/s: VT: vế trái

1 tháng 8 2017

2 . ( x + y ) = 5 . ( y + z ) = 3 . ( z + x )

\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(1\right)\)

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{y-z}{5}=\frac{x-y}{4}\)

7 tháng 2 2019

Vì 5(y+z) = 3(x+z)

Suy ra (x+z) / 5 = (y+z) / 3 = (x+z-y-z) / 5-3 = (x-y) / 2

Suy ra (x+z) / 5 = (x-y) / 2 tương đương (x+z) / 10 = (x-y) / 4                               (1)

2(x+y) = 3(x+z)

Suy ra (x+z) / 2 = (x+y) / 3 = (x+z-x-y) / 2-3 = y-z

(x+z) / 2 = y-z

Tương đương (x+z) / 10 = (y-z) / 5                                                                      (2)

Từ (1) và (2) suy ra:

 \frac{(x - y)}{4}=\frac{(y-z)}{5}

7 tháng 2 2019

Cop mạng ghi nguồn đầy đủ vào nhé!

Ta có:  \(2\left(x+y\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{x+y}{3}=\frac{z+x}{2}\)

\(=\frac{x+y-\left(z+x\right)}{3-2}=y-z\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x+z}{2}=y-z\)

\(\Rightarrow\frac{x+z}{10}=\frac{y-z}{5}\left(1\right)\)

Lại có:\(5\left(y+z\right)=3\left(x+z\right)\)

\(\Rightarrow\frac{y+z}{3}=\frac{x+z}{5}\)

\(=\frac{z+x-\left(y+z\right)}{5-3}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{5}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{10}=\frac{x-y}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

14 tháng 10 2019

Câu hỏi của Nguyễn Quang Tùng - Toán lớp 7 - Học toán với OnlineMath

30 tháng 5 2018

ta có: \(5.\left(y+z\right)=3.\left(z+x\right)\)

\(\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}=\frac{z+x-y-z}{5-3}=\frac{x-y}{2}\)

\(\Rightarrow\frac{z+x}{5}=\frac{x-y}{2}\Rightarrow\frac{1}{2}.\frac{z+x}{5}=\frac{1}{2}.\frac{x-y}{2}=\frac{z+x}{10}=\frac{x-y}{4}\) (1)

ta có: \(2.\left(x+y\right)=3.\left(z+x\right)\)

\(\Rightarrow\frac{x+y}{3}=\frac{z+x}{2}=\frac{x+y-z-x}{3-2}=\frac{y-z}{1}=y-z\)

\(\Rightarrow\frac{z+x}{2}=y-z\Rightarrow\frac{1}{5}.\frac{z+x}{2}=\frac{1}{5}.\left(y-z\right)\Rightarrow\frac{z+x}{10}=\frac{y-z}{5}\)(2)

Từ (1);(2) \(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(=\frac{z+x}{10}\right)\) ( đ p c m)

30 tháng 5 2018

Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-\left(z+x\right)}{15-10}=\frac{z+x-\left(y+z\right)}{10-6}\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)