Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sô Z chính Phường Tận cùng là 21 =>A=\(\sqrt{Z}\) có dạng a9 hoặc a1
TH1:A có dạng (a9)=>A^2=10a+9=100a^2+180.a+81=100a^2+100a+80a+81
để chữ số hàng chục =2=> 8.a+8=10t+2=> 8a=10t-6
\(a=\frac{10t-6}{8}\Rightarrow a=5n+3\)
\(0\le a\le9\Rightarrow0\le n\le1\) \(\Rightarrow t=\left\{0,1\right\}\Rightarrow a=\left(3,8\right)\)
a9=39 hoạc 89 có 39*39=1521 và 89*89=7921 hàng trăm lẻ =>Hàng trăm của A lẻ
TH2. A có dạng a1=>A^2=10a+1=100a^2+20.a+1 => 2a=10t+2=> a=1
11^2=121 hàng trăm cũng lẻ => hàng trăm của A lẻ
KL: lẻ
Cách làm có vẻ chưa đươc tối ưu lăm nhưng. có gì nghiên cuu tiếp
Gọi số chính phương có chữ số tận cùng bằng 4 là Aa4 ( A là số chỉ trăm, a là chữ số hàng chục )
Đặt Aa4 = k2
Vì Aa4 chia hết cho 2 nên k2 chai hết cho 2 => k chia hết cho 2
=> k2 chia hết cho 22 hay k2 chia hế cho 4
=> Aa4 chia hết cho 4
( A . 100 + a4 )chia hết cho 4
Vì A.100 chai hết cho 4 => a4 chia hết cho 4
=> a thuộc {0;2;4;6;8} hay a là số chẵn
Mà a là chữ số hàng chục
=> ĐPCM
Với 1 và 9 làm tương tự
_HT_
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136