Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=n^2+7n+22
Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3
=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3
Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1
Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm
E mới hk lớp 8 nên chỉ thử có j thông cảm!!
Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)
=> \(4\left(n^2+3n+5\right)⋮121\)
=> \(\left(4n^2+12n+9\right)+11⋮121\)
=> \(\left(2n+3\right)^2+11⋮121\)
Vì \(4\left(n^2+3n+5\right)⋮11\) ( vì \(121⋮11\)) và \(11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(\left(2n+3\right)^2⋮121\) ( vì 11 là số nguyên tố)
=> \(\left(2n+3\right)^2+11\) không chia hết cho 121 ( vì 11 không chia hết cho 121)
hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121
=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau) ( đpcm)
xét 2 th
th1)\(n⋮11\)
\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)
th2)\(nkhông⋮11\)
\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)
nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)
khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm
nếu \(\left(n+3\right)^2không⋮11=>đpcm\)
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.
n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n﴾n+1﴿+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.