Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Bài 3:
a: \(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=\left(1-1\right)\left(1-8\right)=0\)
b: \(=x^3-3x^2+3x-1-4x^3+4x+3\left(x^3-1\right)\)
\(=-3x^3-3x^2+7x-1+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot4-14-4=-30\)
\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^2+y^2\right)^2=-1^2=-1\)
P= ( x+2)3+(x-2)3 - 2x.( x2 + 12 )
=x3+6x2+12x+8+x3-6x2+12x-8-2x3-24x
=(x3+x3-2x3)+(6x2-6x2)+(12x+12x-24x)+(8-8)
=0.Vậy gt biểu thức ko phụ thuộc vào biến x
Q = ( x - 1)3- ( x + 1)3 + 6 ( x + 1). ( x-1)
=x3-3x2+3x-1-x3-3x2-3x-1+6x2-6
=(x3-x3)-(-3x2-3x2+6x2)+(3x-3x)-1-1-6
=-8.Vậy....
1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16
= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16
= 8x3 + y3 - 8x3 - y3 - 16
= -16 ( đpcm )
2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3
= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3
= 24xy + 3 ( có phụ thuộc vào biến )
3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19
= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19
= -27 + 243 + 19 = 235 ( đpcm )
4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52
= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52
= -6x2 + 26x - 60 ( có phụ thuộc vào biến )
\(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(P=\left[\left(x+2\right)+\left(x-2\right)\right]\left[\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]-2x^3-24x\)
\(P=2x\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x^3-24x\)
\(P=2x\left(x^2+12\right)-2x^3-24x\)
\(P=2x^3+24x-2x^3-24x\)
\(P=0\)
=> P không phụ thuộc vào biến x
\(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(Q=\left[\left(x-1\right)-\left(x+1\right)\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(Q=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)
\(Q=-2\left(3x^2+1\right)+6x^2-6\)
\(Q=-6x^2-2+6x^2-6\)
\(Q=-8\)
=> Q không phụ thuộc vào biến x
\(N=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(N=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
\(N=0\)
=> N không phụ thuộc vào biến y
\(M=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
\(M=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
\(M=0\)
=> M không phụ thuộc vào biến x
\(H=\left(x+1\right)^3-\left(x-1\right)^3-3\left[\left(x-1\right)^2+\left(x+1\right)^2\right]\)
\(H=x^3+3x^2+3x+1-x^3+3x^2-3x+1-3\left(x^2-2x+1+x^2+2x+1\right)\)
\(H=6x^2+2-3\left(2x^2+2\right)\)
\(H=6x^2+2-6x^2-6\)
\(H=-4\)
=> H không phụ thuộc vào biến x