Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,S=(1-3+32-33)+......+(396-397+398-399)
S=(-20)+...........+396.(1-3+32-33)
S=(-20)+..........+396.(-20)
S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}
b,3S=3-32+33-34+...........+399-3100
3S+S=4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
Mà S chia hết cho (-20) nên S chia hết cho 4
=>1-3100 chia hết cho 4
Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1
=>đpcm
Ta có: B=(1+3)+(32+33)+..........+(398+399)
=> B=1.(1+3)+32.(1+3)+............+398.(1+3)
=> B=1.4+32.4+.......+398.4
=> B=4.(1+32+..........+398)
Vậy B chia hết cho 4 ĐPCM
\(B=1+3+3^2+3^3+...+3^{98}+3^{99}\)
=> \(B=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
=> \(B=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
=> \(B=4+3^3.4+3^4.4+...+3^{98}.4\)
=> \(B=4\left(3^2+3^4+...+3^{98}\right)\)
Vì 4 chia hết cho 4 => \(4\left(3^2+3^4+...+3^{98}\right)\) chia hết cho 4 => B chia hết cho 4