Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR các bt sau có gtri âm với mọi gtri của x
5, E=\(-x^2-3x-5\)
6, F=\(-3x^2-6x-4\)
7, G=\(-5x^2+7x-3\)
\(E=-x^2-3x-5=-\left(x^2+3x+5\right)=-\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}\\ \)
\(=-\left(x+\frac{3}{2}\right)^2-\frac{11}{4}=-\left(\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left(\left(x^2+2x+1\right)+\frac{1}{3}\right)\)
\(=-3.\left(\left(x+1\right)^2+\frac{1}{3}\right)\le-\frac{3.1}{3}=-1< 0\)
\(-x^2-3x-5\)
\(=-\left(x^2+3x+5\right)\)
\(=-\left[x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\right]\)
\(=-\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+5\right]\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{11}{4}\)
Vậy biểu thức luôn âm với mọi giá trị của x.
7 )
Ta có :
\(G=-5x^2+7x-3\)
\(\Rightarrow G=-\left(5x^2+7x+3\right)\)
\(\Rightarrow G=-\left[x^2+2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+4x^2\right]\)
\(\Rightarrow G=-\left[\left(x+\frac{7}{2}\right)^2+\frac{49}{4}-3+4x^2\right]\)
\(\Rightarrow G=-\left[\left(x+\frac{7}{2}\right)^2+\frac{37}{4}+4x^2\right]\)\(\Rightarrow G=-\left(x+\frac{7}{2}\right)^2-\frac{37}{4}-4x^2\)
\(\Rightarrow G< 0\forall x\)
8 )
Đề sai nhé bạn :
Nếu thay \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)vào H \(\Leftrightarrow H>0\)
ta có D= -x^2-x-1 mà -x^2 <0 =>-x^2-x-1 < 0
cm tương tự ta có E,F < 0 với mọi giá trị của x
\(F=2x^2+4x+3\)
\(=2\left(x^2+2x+1\right)+1\)
\(=2\left(x+1\right)^2+1\)\(>\)\(0\) (với mọi x)
\(G=3x^2-5x+3\)
\(=3\left(x^2-\frac{5}{3}x\right)+3\)
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{11}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2>0\) với mọi x
\(F=2x^2+4x+3\)
\(=2\left(x^2+2x+\frac{3}{2}\right)\)
\(=2\left(x+1\right)^2+1\ge1>0\)
vay F luon duong voi moi gt cua x
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+1\right)=3\left(x^2-2x\frac{5}{6}+\frac{25}{36}+\frac{11}{36}\right)\)
\(=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\)
vay......................................
neu co sai bn thong cam nha
5: \(=-\left(x^2+3x+5\right)\)
\(=-\left(x^2+3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)
6: \(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)
\(=-3\left(x+1\right)^2-1< 0\)
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !