K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )

c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

27 tháng 7 2017

a. \(x^2-8x+19\)

\(=x^2-2.x.4+16+3\)

\(=\left(x-4\right)^2+3\ge3\forall x\)

=> đpcm

b. \(4x^2+4x+3\)

\(=\left(2x\right)^2+2.2x.1+1+2\)

\(=\left(2x+1\right)^2+2\ge2\forall x\)

=> đpcm

27 tháng 7 2017

d, \(x^2-2xy+2y^2+2y+5\)

\(=x^2-2xy+y^2+y^2+2y+1+4\)

\(=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Với mọi giá trị của x;y ta có:

\(\left(x-y\right)^2\ge0;\left(y+1\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4\ge4>0\)

Vậy.............

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

a: \(=x^2+4x+4+3=\left(x+2\right)^2+3>0\)

b: \(=4x^2-4x+1+4=\left(2x-1\right)^2+4>0\)

c: \(=x^2+2xy+y^2+y^2-2y+1+2\)

\(=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

19 tháng 7 2017

Câu 1:

\(d,x^2-2xy+2y^2+2y+5\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4\)

\(=\left(x-y\right)^2+\left(x+1\right)^2+4\)

Với mọi giá trị của x;y ta có:

\(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+4>0\)Vậy:.....

Câu 2:

\(a.-x^2+2x-7\)

\(=-\left(x^2-2x+1\right)-6\)

\(=-\left(x-1\right)^2-6\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\)Vậy:......

b, \(-x^2-3x-5\)

\(=-\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)

Với mọi giá trị của x ta có:

\(\left(x+\dfrac{3}{2}\right)^2\ge0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)

Vậy:.....

d, \(-x^2+4xy-5y^2-8y-18\)

\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)

=\(-\left(x+2y\right)^2-\left(y+4\right)^2-2\)

Với mọi giá trị của x,y ta có:

\(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le0\)

\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\)

Vậy :.....

19 tháng 7 2017

Câu 1:

c) \(x^2+y^2-4x+2\)

\(=x^2-4x+4+y^2-2\)

\(=\left(x-2\right)^2+y^2-2\)

>> đề sai. Vì sao?

ta thử đặt x = 2 vào đề thấy ngay bt = -1, hay ta dễ dàng nhận thấy sau khi phân tích.

d) \(x^2-2xy+2y^2+2y+5\)

\(=x^2-2xy+y^2+y^2+2y+1+4\)

\(=\left(x-y\right)^2+\left(y+1\right)^2+1>0\)

Vậy biểu thức trên luôn dương với mọi gt của biến.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)