K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

\(A=4x^2+10y^2-4xy-32y+4x+27\)       

\(=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1\)

\(=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1\)

\(=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1>0\forall x;y\)

18 tháng 9 2019

Pham Van Hung

A=4x^2+10y^2-4xy-32y+4x+27A=4x2+10y2−4xy−32y+4x+27       

=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1=(4x2−4xy+y2)+4x−2y+1+9y2−30y+25+1

=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1=(2x−y)2+2(2x−y)+1+(3y)2−2.3y.5+52+1

=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1>0\forall x;y=(2x−y+1)2+(3y−5)2+1>0∀x;y

28 tháng 6 2016

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)

                                       \(=\left(2x-7\right)^2+2\)(*)

Vì \(\left(2x-7\right)^2\ge0\) với mọi x

=> (*)\(\ge1\)

 =>(*) luôn luôn dương với mọi x

 

28 tháng 6 2016

ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)

vì \(\left(2x-7\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x  (đpcm)

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0 

28 tháng 6 2016

 Đề bài sai! bạn thay x= 2 vào xem âm ko.

28 tháng 6 2016

tớ làm sao ko ra đc

28 tháng 6 2016

-4x2-4x-2=-4(x2+x+1/2)

=-4(x2+2.1/2x+1/4+1/4)

=-4[(x+1/2)2+1/4]

vì (x+1/2)2 +1/4  lớn hơn hoặc = 0 với mọi x nên -4[(x+1/2)2+1/4] bé hơn hoặc = 0 với mọi x hay -4x2-4x-2 luôn âm với mọi x

21 tháng 8 2019

\(Q=5x^2+2y^2+4xy+2x+4y+2009\)

\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)

\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)

21 tháng 8 2019

chu vi hình chữ nhật là 4/5 . chiều rộng bang 4/5 chiềudài . tính diẹn tích hình chữ nhật đó

19 tháng 7 2017

Câu 1:

\(d,x^2-2xy+2y^2+2y+5\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4\)

\(=\left(x-y\right)^2+\left(x+1\right)^2+4\)

Với mọi giá trị của x;y ta có:

\(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+4>0\)Vậy:.....

Câu 2:

\(a.-x^2+2x-7\)

\(=-\left(x^2-2x+1\right)-6\)

\(=-\left(x-1\right)^2-6\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\)Vậy:......

b, \(-x^2-3x-5\)

\(=-\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)

Với mọi giá trị của x ta có:

\(\left(x+\dfrac{3}{2}\right)^2\ge0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)

Vậy:.....

d, \(-x^2+4xy-5y^2-8y-18\)

\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)

=\(-\left(x+2y\right)^2-\left(y+4\right)^2-2\)

Với mọi giá trị của x,y ta có:

\(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le0\)

\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\)

Vậy :.....

19 tháng 7 2017

Câu 1:

c) \(x^2+y^2-4x+2\)

\(=x^2-4x+4+y^2-2\)

\(=\left(x-2\right)^2+y^2-2\)

>> đề sai. Vì sao?

ta thử đặt x = 2 vào đề thấy ngay bt = -1, hay ta dễ dàng nhận thấy sau khi phân tích.

d) \(x^2-2xy+2y^2+2y+5\)

\(=x^2-2xy+y^2+y^2+2y+1+4\)

\(=\left(x-y\right)^2+\left(y+1\right)^2+1>0\)

Vậy biểu thức trên luôn dương với mọi gt của biến.

1 tháng 11 2019

\(x^2+y^2-4x-2\)

\(=x^2+y^2-4x+4-6\)

\(=\left(x^2-4x+4\right)+y^2-6\)

\(=\left(x-2\right)^2+y^2-6\ge-6\)

Xem lại đề nha, kết quả vẫn có thể âm mà