K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)

Biến đổi VT ta có :

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=VP\) (đpcm)

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

6 tháng 9 2016

Ta có : \(A^3+B^3+C^3-3ABC=\left(A+B\right)^3+C^3-3AB\left(A+B\right)-3ABC\)

\(=\left(A+B+C\right)\left[\left(A+B\right)^2-C\left(A+B\right)+C^2\right]-3AB\left(A+B+C\right)\)

\(=\left(A+B+C\right)\left(A^2+2AB+B^2-AC-BC+C^2-3AB\right)\)

\(=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\)

\(=\frac{A+B+C}{2}.\left[\left(A^2-2AB+B^2\right)+\left(B^2-2BC+C^2\right)+\left(C^2-2AC+A^2\right)\right]\)

\(=\frac{A+B+C}{2}\left[\left(A-B\right)^2+\left(B-C\right)^2+\left(C-A\right)^2\right]\)

Vậy ta có đpcm

 

6 tháng 9 2016

Nhanh lên , gan đi học rồi

25 tháng 9 2017

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)

\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)

Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)

\(\Rightarrow p^2-3q=3r\)

Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)

Vậy .....

Chúc bạn học tốt!

Chép mạng

7 tháng 10 2020

hem biet

3 tháng 9 2018

Bài 1:

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac+a^2+ab+ac+a^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Bài 2:

Từ câu 1b ta đã chứng minh được:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Thay a + b + c = 0 vào ta được

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

5 tháng 9 2018

Cảm ơn b nhìu

6 tháng 10 2020

b) Ta có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-c^3=0\)

\(\Leftrightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

=> đpcm

DD
15 tháng 1 2022

\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\Rightarrow a,b,c\le1\Leftrightarrow a-1,b-1,c-1\le0\)

\(a^3+b^3+c^3-a^2-b^2-c^2=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Suy ra \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

mà \(a^2+b^2+c^2=1\)do đó trong ba số \(a,b,c\)có hai số bằng \(1\), một số bằng \(0\).

Khi đó \(a^{2022}+b^{2023}+c^{2024}=1+0+0=1\).