Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\frac{4}{5}=\frac{4\cdot4}{5\cdot4}=\frac{16}{20}=\frac{10+4+2}{20}=\frac{10}{20}+\frac{4}{20}+\frac{2}{20}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}\)\(\frac{1}{10}\)\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=2\\b=5\\c=10\end{cases}};\hept{\begin{cases}a=5\\b=10\\c=2\end{cases}};\hept{\begin{cases}a=10\\b=2\\c=5\end{cases}}\)
NHỚ \(K\)\(NHA\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(dpcm\right)\)
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = UCLN(a,a+b)
\(\Rightarrow\hept{\begin{cases}a⋮d\\a+b⋮d\Rightarrow b⋮d\end{cases}}\)
=> \(d\inƯC\left(a,b\right)\)
Do \(\frac{a}{b}\)là phân số tối giản
=> (a,b) = 1
=> d = 1
=> \(\frac{a}{a+b}\)là phân số tối giản
- Còn phân số \(\frac{a}{a.b}\)không phải là ps tối giản vì nó vẫn rút gọn được: \(\frac{a}{a.b}=\frac{1}{b}\)
( sai thì thôi nha )
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3=\frac{49}{10}-3=\frac{19}{10}\)
Ta có:\(1\frac{8}{11}=\frac{19}{11}< \frac{19}{10}\left(đpcm\right)\)
V...
Xét vế phải : \(\frac{1}{m+1}+\frac{a.\left(m+1\right)-b}{b.\left(m+1\right)}=\frac{1}{m+1}+\frac{a\left(m+1\right)}{b\left(m+1\right)}-\frac{b}{b\left(m+1\right)}=\frac{1}{m+1}+\frac{a}{b}-\frac{1}{m+1}=\frac{a}{b}\) = vế trái
Vậy suy ra đpcm