Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)
Chứng minh BĐT phụ:
\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh
Áp dụng bđt trên, ta có
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)
Vậy..........
Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)
\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)
\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Bài 2:
Từ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)
\(BDT\Leftrightarrow\frac{x^3}{\left(x-2\right)^2}+\frac{y^3}{\left(y-2\right)^2}+\frac{z^3}{\left(z-2\right)^2}\ge\frac{1}{2}\)
Ta chứng minh bổ đề \(\frac{x^3}{\left(x-2\right)^2}\ge x-\frac{1}{2}\Leftrightarrow\frac{\left(3x-2\right)^2}{\left(x-2\right)^2}\ge0\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{y^3}{\left(y-2\right)^2}\ge y-\frac{1}{2};\frac{z^3}{\left(z-2\right)^2}\ge z-\frac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}=VP\)
+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1
<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1
<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1
<=> ac+a+1/ac+a+1
<=> 1
+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)
chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)
1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)
cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)
mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html
Nhìn cái đề gớm quá. Tập viết đề đi nhé b
Ta có:
\(\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\ge0\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+1-a^2-b^2-c^2-a^2b^2c^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\)(1)
Ta có:
\(a^2+b^2+c^2+a^2b^2c^2\ge a^2+b^2+c^2\)(2)
Ta lại có
\(\hept{\begin{cases}a^2b\left(1-b\right)\ge0\\b^2c\left(1-c\right)\ge0\\c^2a\left(1-a\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2b^2\\b^2c\ge b^2c^2\\c^2a\ge c^2a^2\end{cases}}\)
\(\Rightarrow a^2b+b^2c+c^2a\ge a^2b^2+b^2c^2+c^2a^2\)
\(\Rightarrow1+a^2b+b^2c+c^2a\ge1+a^2b^2+b^2c^2+c^2a^2\)(3)
Từ (1), (2), (3)
\(\Rightarrow a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)