K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

a, S=5 + 52 + 5+...+ 52006

5S= 52 + 5+ 54 +... + 52007

5S-S= 52 + 5+ 54 +... + 52007 - ( 5 + 52 + 5+...+ 52006 )

4S = 52007 -  5

S =(52007 -  5):4

11 tháng 2 2016

12^2006=12^2004.12^2=(12^4)^501.4=(...6)^501.4(...6).(...4)=(...4)

6^2007=(...6)

12^2006+6^2007=(....6)+(...4)=(...0)

Số có chữ số tận cùng là 0 chia hết cho 2 và 5

11 tháng 2 2016

122006 = ( 122 )1003 = 1441003 = .........4

62007 = ........6

=> 122006 + 62007 = ......4 + .......6 = ........0 chia hết cho 2 và 5

Vậy 122006 + 62007 chia hết cho 2 và 5 

Tich mình đầu tiên nha !!

25 tháng 2 2016

12^2006 = ( 12^2 )^1003 = ( ......4 )^1003 = ......4

6^2007 = ......6

Do đó : 12^2006 + 6^2007 = .......4 + ......6 = ......0 chia hết cho cả 2 và 5

=> 12^2006 + 6^2007 chia hết cho 2 và 5 ( đpcm )

3 tháng 4 2016

Ta có : 

S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

   = 5 ( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

   = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + ... + 52003 . ( 1 + 125 )

   = 5.126 + 52 .126 + 53 . 126 + .... + 52003 . 126

   = 126 ( 5 + 5+ 53 + ... + 52003 )

Vì 126 chia hết cho 126 => S chia hết cho 126 ( đpcm )

29 tháng 7 2016

\(S=5+5^2+5^3+5^4+...+5^{2006}\) 

\(5S=5^2+5^3+5^4+5^5+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{2007}\right)-\left(5+5^2+5^3+5^4+...+5^{2006}\right)\)

\(4S=5^{2017}-5\)

\(S=\frac{5^{2017}-5}{4}\)

\(S=5+5^2+5^3+5^4+....+5^{2006}\)

\(\Rightarrow5S=5\left(5+5^2+5^3+5^4+.....+5^{2006}\right)\)

\(\Rightarrow5S-S=\left(5^2+5^3+....+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-3\)

\(\Rightarrow S=\frac{5^{2007}-3}{4}\)

4 tháng 4 2017

a) \(5S=5^2+5^3+5^4+...+5^{2006}+5^{2007}\)

    \(5S-S=\left(5^2+5^3+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

    \(4S=\left(5^{2007}-5\right)\)

     \(S=\frac{\left(5^{2007}-5\right)}{4}\)

b)\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2003}.\left(1+5^3\right)\)

\(S=5.126+5^2.126+...+5^{2003}.126\)

\(S=126.\left(5+5^2+...+5^{2003}\right)\)

\(126.\left(5+562+...+5^{2003}\right)\)chia hết cho 126

nên \(S\)chia hết cho 126

25 tháng 3 2018

nhóm 2 số lại 1 cặp

11 tháng 2 2016

a, S =  5 + 52 + 53 +....+52006

 S= (5+52+53+54+55+56) +.....+ ( 22001+52002+52003+52004+52005+52006)

 S= 5 x ( 1+5+52+53+5455 ) +......+ 52001x (1+5+5 2+53+54+55)

 S= 5 x 3906+.........+ 52001 x 3906

 S = 3906x( 5+..+52001)

b, S = 3906 x ( 5+...+52001)

   S = 126 x 3 x ( 5+...+52001)

=> S chia hết 126

11 tháng 2 2016

s chia hết 126 chứ bạn