Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
Vì \(\left\{{}\begin{matrix}3^n.10⋮10\\2^n.5⋮10\end{matrix}\right.\)
Nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)
luôn chia hết cho 10 (đpcm)
3n+2-2n+2+3n-2n=(3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.2.5
=3n.10-2n-1.10
=10.(3n-2n-1)
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10
Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-5.2^n=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\) luôn chia hết cho 10
Vậy có đpcm.
3n + 2 - 2n + 2 + 3n - 2n = (3n + 2 + 3n) - (2n + 2 + 2n ) = 3n.(32 + 1) - 2n - 1.(23 + 2) = 3n.10 - 2n - 1.10 = (3n - 2n - 1).10 chia hết cho 10
Đề thêm điều kiện n nguyên dương
Đặt A là biểu thức cần xét.
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếm với nhau được 25 nhóm như sau:
A=(3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A= 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34)
=> A=(3+32+33+34)(3x+3x+4+...+3x+96) = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x
3n+2-2n+2+3n-2n=(3n+2+3n)-(2n+2+2n)
=3n(32+1)-2n-1(23+2)
=3n.10-2n-1.10=10(3n-2n-1) chia hết cho 10
=>đpcm