Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp
=> (n+6)(n+7) chia hết cho 2
b) n^2 + n + 3 = n(n+1) +3
Vì n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2
mà 3 ko chia hết cho 2
=> n(n+1) +3 ko chia hết cho 2
=>n^2 + n ko chia hết cho 2
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: 91 = 7.13 mà ƯCLN(7 ; 13) = 1 nên ta cần chứng minh A chia hết cho 7 và chia hết cho 13.
Đặt A = (25n – 18n) – (12n – 5n)
Vì (25n – 18n)(25 – 18)= 7 ; (12n – 5n) (12 – 5) = 7 nên A chia hết cho 7
A = (25n – 12n) – (18n – 5n)
Vì (25n – 12n)(25 – 12)= 13 ; (18n – 5n) (18 – 5) = 13 nên A chia hết cho 13
A vừa chia hết cho 7, vừa chia hết cho 13, mà (7 ; 13) = 1
Nên A chia hết cho BCNN(7 ; 13) hay A chia hết cho 91
CMR với mọi số nguyên dương n đều có
5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91
với mọi số nguyên n thì (n+6).(n+7) luôn là tích 2 số nguyên liên tiếp mà trong 2 số nguyên liên tiếp luôn tồn tại 1 số chẵn nên suy ra tích 2 số nguyên đó luôn chia hết cho 2
Vậy (n+6).(n+7) chia hết cho 2 với mọi n thuộc Z(đpcm)
6^(2n) +19^n-2^n+1 = 36^n + 19^n - 2^n +1
với n = 1 thì 36^n + 19^n - 2^n +1 ko chia hết cho 17
36 chia 17 dư 2 => 36^n chia 17 dư 2^n
19 chia 17 dư 2 => 19^n chia 17 dư 2^n
=> 36^n + 19^n - 2^n +1 chia 17 dư 2^n +1
vậy 36^n + 19^n - 2^n +1 chưa chắc đã chia hết cho 17 với mọi n
xem lại đề đi bạn
c) 16^n-15n-1 chia hết cho 225
n = 1 và n = 2 thì 16^n-15n-1 chia hết cho 225
giả sử điều trên đúng với n = k
ta cần chứng minh điều đó đúng với n = k+1
tức là với n = k+1 thì 16^(k+1)-15(k+1)-1 chia hết cho 225
thật vậy:
16^(k+1)-15(k+1) -1 = 16.16^k -16.15k - 16 + 15.15k = 16(16^k - 15k -1) + 225.k
ta có: 16^k-15k-1 chia hết cho 225 mà 225k chia hết cho 225
=>16^(k+1)-15(k+1)-1 chia hết cho 225
đpcm
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= ( 3n + 2 + 3n ) - ( 2n + 4 - 2n )
= ( 3n . 32 + 3n . 1 ) - ( 2n . 24 - 2n . 1 )
= 3n ( 32 + 1 ) - [ 2n ( 24 - 1 ) ]
= 3n . 10 - 2n . 15
= 3n - 1 . 3 . 10 - 2n - 1 . 2 .15
= 3n - 1 . 30 - 2n - 1 . 30
Vì 30 chia hết cho 30
Nên 3n - 1 . 30 chia hết cho 30
Và 2n - 1 . 30 chia hết cho 30
Suy ra 3n - 1 . 30 - 2n - 1 . 30 chia hết cho 30
Hay 3n + 2 - 2n + 4 + 3n + 2n chia hết cho 30 ( đpcm )
Với \(n=1\Rightarrow2^n+6.9^n=2+6.9=56⋮7\)
Giả sử \(2^k+6.9^k⋮7\) ta cần chứng minh \(2^{k+1}+6.9^{k+1}⋮7\)
\(2^{k+1}+6.9^{k+1}=2.2^k+6.9.9^k=2\left(2^k+27.9^k\right)=2\left(2^k+6.9^k+21.9^k\right)\)
Ta thấy \(2^k+6.9^k⋮7;21.9^k⋮7\Rightarrow2^{k+1}+6.9^{k+1}⋮7\)
Kết luận: \(2^n+6.9^n⋮7\forall n\)