K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :

20.n + 9 chia hết cho d

30.n + 13 chia hết cho d

==> 60.n + 27 chia hết cho d

       60.n + 26 chia hết cho d

==> 60.n + 27 - (60.n + 26) chia hết cho d

==> 27 - 26 chia hết cho d

==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.

Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.

9 tháng 11 2016

Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :

20.n + 9 chia hết cho d

30.n + 13 chia hết cho d

==> 60.n + 27 chia hết cho d

       60.n + 26 chia hết cho d

==> 60.n + 27 - (60.n + 26) chia hết cho d

==> 27 - 26 chia hết cho d

==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.

Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.

15 tháng 11 2017

20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1

Gọi  ƯCLN(20n+9;30n+12) là d

\(\Rightarrow\)20n+9 \(⋮\)d

      30n+13 \(⋮\)d

\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d

        2.(30n+13)=60n+26 \(⋮\)d

\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}

Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.

tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d

sau đó tìm và nhân sao cho số n của 2 số bằng nhau.

VD: như bài trên mk lấy là số 60

sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)

rồi làm như mình làm ở trên.

bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....

7 tháng 1 2016

Gọi ƯCLN(2n+3,4n+8)là d

Ta có :

      2n+3 chia hết cho d

suy ra 4n+6 chia hết cho d

suy ra : (4n+8)-(4n+6)chia hết cho d 

suy ra : 2 chia hết cho d

suy ra d thuộc Ư(2)

Ư(2)=1,2

Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ

suy ra d=1

vậy ƯCLN(2n+3,4n+8)=d=1

vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

tick nhé

24 tháng 11 2016

goi UCLN(20n+9,30,+13)=d

=>20n+9 chia hết cho d

    30+13 chia hết cho d

=>60+27 chia hết cho d

    60+26 chia hết cho d

=>(60+27)-(60+26) chia hết cho d

=>1 chia hết cho d

mà 1 chia hết cho 1

=>d=1

=>UCLN(20n+9,30n+13)=1

=>20n+9 và 30n+13 là 2 số nguyên tố cùng nhau

vậy ..........  (dccm)

12 tháng 11 2017

Gọi \(UCLN\left(20n+9;30n+13\right)=d\left(d\in N^{\cdot}\right)\)

\(\Rightarrow\)\(20n+9⋮d\)

          \(30n+13⋮d\)

\(\Rightarrow\)\(3\left(20n+9\right)⋮d\)

          \(2\left(30n+13\right)⋮d\)

\(\Rightarrow\)\(60n+27⋮d\)

         \(60n+26⋮d\)

\(\Rightarrow\)\(\left(60n+27\right)-\left(60n+26\right)⋮d\)

\(\Rightarrow60n+27-60n-26⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in UCLN\left(1\right)\Rightarrow UCLN\left(20n+9;30n+13\right)=1\)

\(\Rightarrow\)20n+9 và 30n+13 là 2 snt cùng nhau

Vậy 20n+9 và 30n+13 là 2 snt cùng nhau (đpcm)

15 tháng 11 2018

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

15 tháng 11 2018

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau

3 tháng 10 2015

Đặt ƯCLN(20n+9 ; 30n+13) = d

=> 3.(20n + 9) - 2.(30n + 13) chia hết cho d

=> 60n + 27 - 60n + 26 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN(20n+9 ; 30n+13) = 1 nên 20n + 9 và 20n + 13 nguyên tố cùng nhau 

3 tháng 10 2015

Đặt ƯCLN(20n+9 ; 30n+13) = d

=> 3.(20n + 9) - 2.(30n + 13) chia hết cho d

=> 60n + 27 - 60n + 26 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN(20n+9 ; 30n+13) = 1 nên 20n + 9 và 20n + 13 nguyên tố cùng nhau 

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

10 tháng 11 2015

Gọi d là ƯC(20n+9;30n+13) (d thuộc N*)

=>20n+9 chia hết cho d =>60n+27 chia hết cho d

=>30n+13 chia hết cho d =>60n+26 chia hết cho d

=>60n+27-60n-26 chia hết cho d

=>1 chia hết cho d

=>d=1 =>(20n+9;30n+13)+1

=>20n+9 và 30n+13 là 2 số nguyên tố cùng nhau