Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n (n chữ số 9)
= 9(1111...111 +2n)chia hết cho 9 (n chữ số 1)
Đặt B = 111...111+2n = 111...111 - n +3n
Tổng các chữ số của 111...111 là n
=> B=111...111 - n +3n chia hết cho 3
=> A chia hết cho 3
Vì (3,9)=1 => A chia hết cho 27
mình ghi lại đề nhé
Chứng tỏ rằng :
a, 1028 + 8 chia hết cho 72
b, 88 + 220 chia hết cho 17
c, 10n + 18n - 1 chia hết cho 27
d, 10n +72n - 1 chia hết cho 81
a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8
Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9
=> 1028 + 8 chia hết cho 8.9 = 72
b) 88 + 220 = (23)8 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17 => 88 + 220 chia hết cho 17
c) 10n + 18n - 1 = (10n - 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)
= 9.111...1 - 9n + 27n (Có n chữ số 1)
= 9.(111...1 - n) + 27n
Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 9.3 = 27
Mà 27n chia hết cho 27
Nên 9.(111...1 - n) + 27n chia hết cho 27
Vậy....
d) 10n + 72n - 1 = (10n - 1) - 9n + 81n = 99...9 - 9n + 81n (Có n chữ số 9)
= 9.(11..1 - n) + 81n
Nhận xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9
=> 9.(11...1 - n) chia hết cho 9.9 = 81
Mà 81n chia hết cho 81
Nên 9.(11..1 - n) + 81n chia hết cho 81
Vậy...
bài này áp dụng phương pháp quy nạp 2 lần.
.................................
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
a) 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 27n - 9n ( Số 99...9 có n chữ số 9)
= (99...9 - 9n) + 27n = 9.(11...1 - n) + 27n ( có n chữ số 1)
Nhận xét: Số 11...1 có tổng các chữ số bằng 1 + 1...+ 1 = n
Mà ta có: Số tự nhiên và tổng các chữ số của nó có cùng số dư khi chia cho 3 => 11...1 và n có cùng số dư khi chia cho 3
=> 11...1 - n chia hết cho 3 => 9.(11...1 - n) chia hết cho 9.3 = 27
Ta có: 27n chia hết cho 27 nên 9.(11...1 - n) + 27n ( có n chữ số 1) chia hết cho 27
Vậy 10n + 18n - 1 chia hết cho 27
b) Tương tự câu a)
1033 + 8 có tận cùng là 8 => 1033 + 8 chia hết cho 2
1033 + 8 có tổng các chữ số là 9 => 1033 + 8 chia hết cho 9
1010 + 14 có tận cùng là 4 => 1010 + 14 chia hết cho 2
1010 + 14 có tổng các chữ số là 15 => 1010 + 14 chia hết cho 3
Giả sử: 10 ^ n + 18n - 1 chia hết cho 27
=> 10^n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27