Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)
2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3
Bài 1: Tìm m mới đúng nhé!
\(2x^2+\left(2m-1\right)x+m-1=0\\ \Delta=b^2-4ac=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( {2m - 1} \right)}}{2} = \dfrac{{ - 2m + 1}}{2}\\ {x_1}{x_2} = \dfrac{c}{a} = \dfrac{{m - 1}}{2} \end{array} \right. \)
Theo đề bài ta có:
\( 4x_{_1}^2 + 4x_2^2 + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left( {x_1^2 + x_2^2} \right) + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {\dfrac{{ - 2m + 1}}{2}} \right)}^2} - 2\left( {\dfrac{{m - 1}}{2}} \right)} \right] + 2\left( {\dfrac{{m - 1}}{2}} \right) = 1\\ \Leftrightarrow 4{m^2} - 7m + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l} m = 1\\ m = \dfrac{3}{4} \end{array} \right. \)
Vậy ...
Bài 2:
\(a)x^2+\left(m+2\right)x+m-1=0\\ \Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)=m^2+8\ge0\forall m\)
b) Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = - \left( {m + 2} \right) \\ {x_1}{x_2} = \dfrac{c}{a} = m - 1 \end{array} \right. \)
Theo đề bài ta có:
\( A = x_1^2 + x_2^2 - 3{x_1}{x_2}\\ A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 3{x_1}{x_2}\\ A = {\left[ { - \left( {m + 2} \right)} \right]^2} - 5\left( {m - 1} \right)\\ A = {m^2} + 4m + 4 - 5m + 5\\ A = {m^2} - m + 9\\ A = \left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4}} \right) - \dfrac{1}{4} + 9\\ A = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{{35}}{4} \ge \dfrac{{35}}{4} \)
Vậy \({A_{\min }} = \dfrac{{35}}{4} \Leftrightarrow m - \dfrac{1}{2} = 0 \Leftrightarrow m = \dfrac{1}{2} \)
Bài toán chán ngắt, hoàn toàn yếu đuổi nhưng cho con số to để hù dọa 1 cách vô nghĩa
\(a^2+4036ab+b^2\ge4038ab\)
\(\Rightarrow\frac{1}{ab}\ge\frac{4038}{a^2+4036ab+b^2}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge\frac{4038\left(a-b\right)^2}{a^2+4036ab+b^2}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2+\frac{4038\left(a-b\right)^2}{a^2+4036ab+b^2}\) (1)
Hoàn toàn tượng tự ta có: \(\frac{a}{b}+\frac{b}{a}\ge2+\frac{2040\left(a-b\right)^2}{a^2+4038ab+b^2}\) (2)
Cộng vế với vế (1) và (2) ta có đpcm
Lời giải:
Câu GPT: bạn xem lại đề bài.
Câu so sánh
Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:
\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)
\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)