Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)\)
\(=\left[\left(x+y\right)+z\right]^3-\left(x^3-y^3-z^3\right)\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-\left(x^3+y^3+z^3\right)\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Do x,y,z nguyên và cùng tính chẵn lẻ \(\Rightarrow\left(x+y\right);\left(y+z\right);\left(z+x\right)\) đều là ba số chẵn
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮8\)
mà (3;8)=1 và 3.8=24
\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮24\) (đpcm)
Có (x+y+z)3−(x3+y3+z3)(x+y+z)3−(x3+y3+z3)
=[(x+y)+z]3−(x3−y3−z3)=[(x+y)+z]3−(x3−y3−z3)
=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)
=3xy(x+y)+3(x+y)2z+3(x+y)z2=3xy(x+y)+3(x+y)2z+3(x+y)z2
=3(x+y)[xy+(x+y)z+z2]=3(x+y)[xy+(x+y)z+z2]
=3(x+y)[x(y+z)+z(y+z)]=3(x+y)[x(y+z)+z(y+z)]
=3(x+y)(y+z)(x+z)=3(x+y)(y+z)(x+z)
Do x,y,z nguyên và cùng tính chẵn lẻ ⇒(x+y);(y+z);(z+x)⇒(x+y);(y+z);(z+x) đều là ba số chẵn
⇒(x+y)(y+z)(z+x)⋮8⇒(x+y)(y+z)(z+x)⋮8
mà (3;8)=1 và 3.8=24
⇒3(x+y)(y+z)(z+x)⋮24⇒3(x+y)(y+z)(z+x)⋮24 (đpcm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
cho x,y,z nguyên và (x-y)*(y-z)*(z-x)=m. Chứng minh rằng: (x-y)^3 + (y-z)^3 + (z-x)^3 chia hết cho m
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.
Đặt y+z-x=a
x+z-y=b
x+y-z=c
Ta thấy a+b+c=y+z-x+x+z-y+x+y-z=x+y+z
Ta có: \(P=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3-c^3\)
\(=3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=3\cdot2z\cdot2y\cdot2x\)
\(=24xyz⋮24\)
Vậy P chia hết cho 24