K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

\(11.5^{2n}+2^{3n+2}+2^{3n+1}\)

\(=17.5^{2n}-6.5^{2n}+2^{3n}.6\)

\(=17.5^{2n}-6\left(5^{2n}-2^{3n}\right)\)

\(=17.5^{2n}-6\left(25^n-8^n\right)\)

Có \(17.5^{2n}⋮17\)

\(25^n-18^n⋮\left(25-18\right)⋮17\left(với\forall n\right)\)

\(\RightarrowĐpcm\)

4 tháng 2 2019

11.52n + 23n+2 + 23n+1 

= 11.25n + 4.23n + 2.23n

= 17.25n - 6.25n + 2.23n.(2+1)

= 17.25n -  6.25n + 6.23n

= 17.25n - 6.(25n - 23n)

= 17.25n - 6.(25n - 8n)

mà 25 - 8 = 17 chia hết cho 17

=> 25n - 8n chia hết cho 17

=> 17.25n - 6.(25n - 8n) chia hết cho 17

=> đpcm

AH
Akai Haruma
Giáo viên
3 tháng 3 2020

Lời giải:

$11.5^{2n}+2^{3n+2}+2^{3n+1}=11.25^n+8^n.4+8^n.2=11.25^n+6.8^n$

Vì $25\equiv 8\pmod {17}$

$\Rightarrow 11.5^{2n}+2^{3n+2}+2^{3n+1} =11.25^n+6.8^n\equiv 11.8^n+6.8^n\equiv 17.8^n\equiv 0\pmod {17}$

Hay $11.5^{2n}+2^{3n+2}+2^{3n+1}\vdots 17$

Hay $

3 tháng 3 2020

Này Akai Haruma, cho mk hỏi mod 17 nghĩa là gì vậy

5 tháng 3 2020

Cámownbanjraatsnhiuf(hehehe)hiha

25 tháng 5 2020

kmmdjkxmcmkjkdkddfffdfdg

25 tháng 5 2020

Mình nghĩ đề là 33n+1

33n+2+5.33n+1 

33n.32+5.33n.2

33n.9+33n.10

=>33n.19\(⋮\)19