K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

\(2^2+5^2+8^2+...+\left(3n-1\right)^2=\dfrac{n\left(6n^2+3n-1\right)}{2}\left(1\right)\)

Với n=1

\(VT=4;VP=4\)

(1) đúng với n=1

Giả sử (1) đúng với n=\(k\ge1\)

\(2^2+5^2+8^2+...+\left(3k-1\right)^2=\dfrac{k\left(6k^2+3k-1\right)}{2}\)

Ta cần phải chứng minh (1) đúng với n=k+1

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left[3\left(k+1\right)-1\right]^2=\dfrac{\left(k+1\right)\left[6\left(k+1\right)^2+3\left(k+1\right)-1\right]}{2}\)

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left(3k+2\right)^2=\dfrac{\left(k+1\right)\left(6k^2+15k+8\right)}{2}\)

\(VT=\dfrac{k\left(6k^2+3k-1\right)}{2}+\left(3k+2\right)^2=\dfrac{6k^3+3k^2-k+18k^2+24k+8}{2}\)

\(=\dfrac{6k^3+21k^2+23k+8}{2}=\dfrac{6k^3+15k^2+8k+6k^2+15k+8}{2}\)

\(=\dfrac{k\left(6k^2+15k+8\right)+\left(6k^2+15k+8\right)}{2}=\dfrac{\left(6k^2+15k+8\right)\left(k+1\right)}{2}\)

\(\Leftrightarrow VT=VP\)

suy ra đpcm

NV
12 tháng 2 2020

Câu a làm rồi

Câu b hình như bạn nhầm đề, với dạng của dãy như vậy thì số hạng tổng quát của nó là \(n\left(3n-1\right)\) chứ ko phải \(n\left(3n+1\right)\)

\(\sum n\left(3n-1\right)=3\sum n^2-\sum n=\frac{n\left(n+1\right)\left(2n+1\right)}{2}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)}{2}\left(2n-1-1\right)=n^2\left(n+1\right)\)

20 tháng 12 2020

Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko

2+3=5; 5+3=8

Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)

Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)

20 tháng 10 2017

Chứng minh: 3n > 3n + 1 (1)

+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).

+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.

Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1

Thật vậy, ta có:

3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)

= 9k + 3

= 3k + 3 + 6k

= 3.(k + 1) + 6k

> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)

⇒ (1) đúng với n = k + 1.

Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.

9 tháng 4 2017

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2

Vậy hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là

Sk= 2 + 5 + 8 + …+ 3k – 1 =

Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh

Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =

Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*

b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức đúng với n = k ≥ 1, tức là

Ta phải chứng minh .

Thật vậy, từ giả thiết quy nạp, ta có:

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*

c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k ≥ 1, tức là

Sk = 12 + 22 + 32 + …+ k2 =

Ta phải chứng minh

Thật vậy, từ giả thiết quy nạp ta có:

Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*



tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

NV
12 tháng 2 2020

\(\sum n\left(3n+1\right)=\sum3n^2+\sum n=3\sum n^2+\sum n\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{2}+\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)}{2}\left(2n+1+1\right)=n\left(n+1\right)^2\)

12 tháng 2 2020

làm thep pp quy nạp mà b

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).