K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Ta có:

a/b=c/d

=> a/b=c/d=a+b/c+d      ( tính chất dãy tỉ số bằng nhau )

=> DPCM

14 tháng 9 2017

ak nhầm

tính chất dãy tỉ số = nhau đó bạn!

14 tháng 2 2016

a) vì a/b= c/d nên ta có a/b=c/d=k                                                                                                                       suy ra a=kb ; c=kd                                                                                                                                     ta co :a/a-b=kb/kb-b =kb/b.(k-1)=k/k-1     (1)                                                                                                ta có:c/c-d=kd/kd-d=kd/d.(k-1)=k/k-1      (2)                                                                                       Từ (1) và (2) suy ra a/a-b=c/c-d                                                                                                                b) ta có:a+b/b=kb+b/b=b.(k+1) /b=k+1        (1)                                                                                                           c+d/d=kd+d/d=d+(k+1)/d=k+1      (2)                                                                                                                từ (1) và (2) suy ra a+b/b=c+d/d

27 tháng 12 2016

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

27 tháng 12 2016

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

11 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)

Vậy.......

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

#

18 tháng 9 2016

Khó quá! Mình chưa học tỉ lệ thức

5 tháng 10 2016
đặt x/4=y/7=k suy ra x=4k y=7k mặt khác xy=112 suy ra 4k.7k=112 k^2.(4.7)=112 k^2.28=112 k^2=4 k=2;-2 x/4=2 x=8 y/7=2 y=14 x/4=-2 x=-8 y/7=-2 y=-14 2/ ta có a/b=c/d suy ra ad=bc suy ra ab+ad=ab+bc a(b+d)=b(a+c) suy ra a/b=a+c/b+d 3/ ta có a/b=c/d suy ra b/a=d/c 1-b/a=1-d/c suy ra a-b/a=c-d/c
8 tháng 7 2016

Bài 1: Ta có:  \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)

=> 7xy=4yy

=> 7.112=4.y2

=> y2=784:4

=> y2=196.

Mà vì 196= 14.14  => y=14  (2)

TỪ (1) và (2)  => 14.4=x.7

=> x=56:7=8

Vậy x=8;y=14

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

9 tháng 10 2020

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!
21 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)