Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)
\(\Leftrightarrow (x+y)\left(\frac{1}{xy}+\frac{1}{z(x+y+z)}\right)=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y).\frac{z(y+z)+x(z+y)}{xyz(x+y+z)}=0\)
\(\Leftrightarrow \frac{(x+y)(z+x)(z+y)}{xyz(x+y+z)}=0\Rightarrow (x+y)(y+z)(x+z)=0\)
\(\Rightarrow \left[\begin{matrix} x=-y\\ y=-z\\ z=-x\end{matrix}\right.\)
Không mất tổng quát, giả sử \(x=-y\):
\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{(-y)^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{(-y)^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
Do đó: \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\) (đpcm)
\(x;y;z\ne0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\xy=-z\left(x+y+z\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\xy+xz+yz+z^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\\left(x+z\right)\left(y+z\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
- Với \(x=-y\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
\(\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)
2 trường hợp còn lại tương tự
Câu hỏi của Lan Anh - Toán lớp 8 | Học trực tuyến, bạn sửa số 9 thành số 0 ở VP ở dòng 2 nhé
ta có \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=>\(\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)
<=>\(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=>\(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=>\(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
Vì\(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\Rightarrow2004-x=0\Rightarrow x=2004\)
Vậy nghiệm của phương trình là x=2004
\(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+1-\frac{x}{2003}\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=9\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)
a, \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2001}-1+2=\dfrac{1-x}{2002}-\dfrac{x}{2003}+2\)
\(\Leftrightarrow\dfrac{2-x}{2001}+1=\left(\dfrac{1-x}{2002}+1\right)+\left(\dfrac{-x}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{2003-x}{2001}=\dfrac{2003-x}{2002}+\dfrac{2003-x}{2003}\)
\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Vì \(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)
\(\Rightarrow2003-x=0\)
\(\Rightarrow x=2003\)
Vậy : \(s=\left\{2003\right\}\)
b, \(\dfrac{x-5}{100}+\dfrac{x-4}{101}=\dfrac{x-100}{5}+\dfrac{x-101}{4}\)
\(\Leftrightarrow\dfrac{x-5}{100}+\dfrac{x-4}{101}-2=\dfrac{x-100}{5}+\dfrac{x-101}{4}-2\)
\(\Leftrightarrow\left(\dfrac{x-5}{100}-1\right)+\left(\dfrac{x-4}{101}-1\right)=\left(\dfrac{x-100}{5}-1\right)+\left(\dfrac{x-101}{4}-1\right)\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}=\dfrac{x-105}{5}+\dfrac{x-105}{4}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}-\dfrac{x-105}{5}-\dfrac{x-105}{4}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)
Vì \(\dfrac{1}{100}+\dfrac{1}{101}-\dfrac{1}{5}-\dfrac{1}{4}\ne0\)
\(\Rightarrow x-105=0\)
\(\Rightarrow x=105\)
Vậy : \(s=\left\{105\right\}\)
\(a,\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\)haizzz bạn cộng mỗi hạng tử ở mỗi vế cho một. Chuyển vế và giải ra x=2003
b, Tương tự bạn -1 cho mỗi vế. GIải phương trình đc x=105
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x+2x=24+1\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)
\(\Leftrightarrow17\left(x-1\right)=12\)
\(\Leftrightarrow17x-17=12\)
\(17x=12+17\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)
c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)
\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\)
\(\Leftrightarrow-x=-2003\)
\(\Leftrightarrow x=2003\)
Vậy phương trình có một nghiệm là x = 2003
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow4x+2x+2x=1+24\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy S={\(\dfrac{25}{8}\)}
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=6+3+12+8\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy S={\(\dfrac{29}{17}\)}
\(\dfrac{x-4}{2001}\)- 1 +\(\dfrac{x-3}{2002}\)-1 + \(\dfrac{x-2}{2003}\)-1 =\(\dfrac{x-2003}{2}\)-1 + \(\dfrac{x-2002}{3}\)-1 +\(\dfrac{x-2001}{4}\)-1 <=> \(\dfrac{x-2005}{2001}\)+\(\dfrac{x-2005}{2002}\)+\(\dfrac{x-2005}{2003}\)-\(\dfrac{x-2005}{2}\)-\(\dfrac{x-2005}{3}\)-\(\dfrac{x-2005}{4}\)= 0 <=> (x-2005). (\(\dfrac{1}{2001}\)+\(\dfrac{1}{2002}\)+\(\dfrac{1}{2003}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) =0 <=> x-2005=0 ( vì \(\dfrac{1}{2001}\) +\(\dfrac{1}{2002}\) +\(\dfrac{1}{2003}\)- \(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\) khác 0) =>x = 2005
x-4/2001+ x-3/2002 + x-2/2003= x-2003/2 + x-2002/3 + x-2001/4
<=>(x-4/2001 -1)+(x-3/2002 -1)+(x-2/2003 -1)-(x-2003/2 -1)+
(x-2002/3 -1)+(x-2001/4 -1) =0
<=>x-2005/2001+ x-2005/2002+ x-2005/2003- x-2005/2-
x-2005/3- x-2005/4 =0
<=>(x-2005).(1/2001+1/2002+1/2003- 1/2- 1/3- 1/4)=0
<=>x-2005=0 (vì 1/2001+1/2002+1/2003-1/2-1/3-1/4)
<=>x=2005
Vậy pt có nghiệm là x=2005
\(\dfrac{xy+xz+yz}{xyz}=\dfrac{1}{x+y+z}\)
\(\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\)
\(x^2y+xy^2+xyz+x^2z+xyz+xz^2+xyz+y^2z+z^2y=xyz\)
\(x^2\left(y+z\right)+xy\left(y+z\right)+xz\left(z+y\right)+yz\left(y+z\right)=0\)
\(\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)
\(\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)
\(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)