K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Chứng minh √7 là số vô tỉ. Câu 2. a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2) Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2. Câu 4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:

b) Cho a, b, c > 0. Chứng minh rằng:

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

2
10 tháng 11 2017

Câu 4:

a) C/m tương đương

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng

=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)

b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)

Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)

+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)

+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)

Cộng vế vs vế ta có:

\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)

c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)

=> \(ab\le\dfrac{12}{5}\)

Vậy GTLN của P là \(\dfrac{12}{5}\)

Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ

\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)

11 tháng 11 2017

Câu 10:

a) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-\left(a^2-b^2\right)\le0\) => luôn đúng

\(\Rightarrow\left(a+b\right)^2\le2a^2+2b^2\Rightarrowđpcm\)

12 tháng 12 2016

ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)

\(\left(a+2b\right)^2\le3.3c^2=9c^2\)\(a+2b\le3c\)

lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

dấu = xảyra khi.... a+2b2=3c2(:v)

13 tháng 12 2016

cảm ơn bạn haha

21 tháng 4 2020

Theo BĐT tam giác ta có \(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự \(b^2< bc+ba;c^2< ca+cb\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Câu 2 nếu a,b,c không là độ dài 3 cạnh tam giác nó vẫn đúng theo BĐT Schur

19 tháng 11 2015

bài này giải thế này nhé

Áp dụng bất đẳng thức 

\(a^3+b^3\ge ab\left(a+b\right)\)\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)