Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)
\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)
\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)
a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)
\(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)
b, \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)
\(=\left(x-1\right)^2\)
\(=\left(101-1\right)^2=10000\)
c, \(C=4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+5^2+2\)
\(=\left(2x-5\right)^2+2\)
\(=\left(52,5.2-5\right)^2+2\)
\(=100^2+2=10002\)
Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.
Bài giải:
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
WOW !!! Tốc độ đánh máy của bạn thần thánh thật đấy......2 phút mà nhiều quá trời luôn
a) \(-x^3-27x^2+9x+27\)
\(=-x^2\left(x+27\right)+9\left(x+3\right)\)
Thay x = -27 vào ta được:
\(=-x^2\left(-27+27\right)+9\left(-27+3\right)\)
\(=0+9.\left(-24\right)\)
\(=-216\)
b) \(\left(x+y\right)^3-3x-3y\)
\(=\left(x+y\right)^3-3\left(x+y\right)\)
Thay x + y = -2 vào ta được
\(=\left(-2\right)^3-3\left(-2\right)\)
\(=-8+6\)
\(=-2\)
Bài 1:
a, \(6x^2\left(3x^2-4x+5\right)=18x^4-24x^3+30x^2\)
b, \(\left(3x-y\right)^2=9x^2-6xy+y^2\)
c, \(\left(x+3\right)\left(x-3\right)-x\left(x-5\right)=x^2-9-x^2+5=-4\)
d, \(\left(x+2\right)^2+\left(x-3y\right)^2-\left(2x+4\right)\left(x-3\right)\)
\(=x^2+4x+4+x^2-6xy+9y^2-2x^2+2x+12\)
\(=9y^2+6x+16\)
Bài 2:
a, \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
b, \(27x^3-\dfrac{1}{27}=\left(3x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(3x-\dfrac{1}{3}\right)\left(9x^2-x+\dfrac{1}{9}\right)\)
c, \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
d, \(x^2+7x+12=x^2+3x+4x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
Bài 1 bạn tách hằng đẳng thức ra rồi thay vào tính bình thường . Mình làm bài 2 nha.
D = ( x + y )2 - 6.( x + y ) - 5
Thay x + y = -9 vào D, ta có :
D = ( -9 )2 - 6.( -9 ) - 5 = 81 + 54 - 5 = 130
Bài 1:
a: \(=\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2=36x^2=36\cdot\dfrac{1}{9}=4\)
b: \(=\left(x+y-7-y+6\right)^2=\left(x-1\right)^2=100^2=10^4\)
c: \(C=4x^2-20x+27\)
\(=4x^2-20x+25+2\)
\(=\left(2x-5\right)^2+2\)
\(=\left(2\cdot52.5-5\right)^2+2=100^2+2=10002\)
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)
a)\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5+\left(x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(\Rightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(\Rightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
a) (x - y)(x4 + x3y + x2y2 + xy3 + y4)
= x(x4 + x3y + x2y2 + xy3 + y4) - y(x4 + x3y + x2y2 + xy3 + y4)
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
b) (a + b)(a2 - ab + b2)
= a(a2 - ab + b2) + b(a2 - ab + b2)
= a3 - a2b + ab2 + a2b - ab2 + b3
= a3 + b3
a,\(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)
\(=x^2+2xy=x\left(x+2y\right)\left(đpcm\right)\)
b,\(x^3-9x^2+27x^3-27=\left(x-3\right)^3\)
Vs \(x=5\Rightarrow\left(x-3\right)^3=\left(5-3\right)^3=2^3=8\)
mình chép đề bài sai, ko có từ chữ "tại" trở đi, chỉ chứng minh dẳng thức bằng nhau thôi