K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

1) biến đổi vế trái:

= a2+2ab+b2 -a2 +2ab -b2

=4ab = vế phải ( đpcm)

3;5 tuong tu

5 tháng 8 2016

1) (a + b)- (a - b)2 = a+ 2ab + b- a+ 2ab - b2 = 4ab

3) (a + b)2 - 4ab = a+ 2ab + b- 4ab = a2 - 2ab + b= (a - b)2

5) a3 + b= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)

8 tháng 8 2018

1) (a + b)2 - (a - b)2 = 4ab

VT = (a + b) ² - ( a - b ) ² = ( a² + 2ab + b²) - (a² - 2ab + b² )  = a² + 2ab + b² - a² + 2ab - b² = 4ab = VP (đpcm)

2) (a + b) ² + (a - b)² = 2(a² + b² )

VT = (a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b² = 2a² + 2b² = 2 (a² + b²) = VP (đpcm)

3) (a + b)² - 4ab = (a - b)²

VT = (a + b)² - 4ab = a² + 2ab + b² - 4ab = a² - 2ab + b² = (a - b)² = VP (đpcm)

4) (a - b)² + 4ab = (a + b)²

VT = (a - b)² + 4ab = a² - 2ab + b² + 4ab = a² + 2ab + b² = (a + b)² = VP (đpcm)

5) a3 + b3 = (a + b)3 - 3ab (a + b)

VP = (a + b)3 - 3ab (a + b) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3+ b3 = VT (đpcm)

6) a3 - b3 = (a - b)3 + 3ab (a - b)

VP = (a - b)3 + 3ab (a - b) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3- b3 = VT (đpcm)

7) a3 + b3 + c3 - 3abc = ( a + b + c) ( a² + b² + c² - ab - bc - ac )

VP =  (a + b + c) (a2 + b2 + c2 - ab - bc - ac)

     = a3 + ab²  + ac² - a²b - abc - a²c + a²b + b3 + bc² - ab² - b²c - abc + a²c + b²c + c3 - abc - bc² - ac² 

     = a3 + b3 + c3 - 3abc = VT (đpcm) 

câu 7 mk sửa đề lại xíu nhea !!!

có j sai xót mong m.n bỏ qa cho ☺♥

8 tháng 8 2018

Cảm ơn bạn nhiều nha 

8 tháng 10 2015

b)(a-b)^2
=a^2 -2ab+b^2
=a^2 +2ab+b^2 -4ab
=(a+b)^2 - 4ab
a)(a+b)^2
=a^2 +2ab+b^2
=a^2 -2ab+b^2 +4ab
=(a-b)^2 + 4ab

c)a^3+b^3

=(a^3+3a^2b+3ab^2+b^2)-(3a^2b+3ab^2)

=(a+b)^3-3ab(a+b)

d)a^3-b^3

=(a^3-3a^2b+3ab^2-b^3)+(3a^2b-3ab^2)

=(a-b)^3+3ab(a-b)

e)(a^2+b^2)(x^2+y^2)

=(a.x)^2+(b.x)^2+(a.y)^2+(b.y)^2

=((a.x)^2-2abxy+(b.y)^2)+((a.y)^2-2abxy+(b.x)^2)

=(ax-by)^2+(ay+bx)^2

l-ike giùm mik vs công sức cả buổi đấy

9 tháng 8 2019

a)    \(\left(A+B\right)^2=\left(A+B\right)\left(A+B\right)=A^2+AB+AB+B^2=A^2+2AB+B^2\)

b)  \(\left(A+B\right)^3=\left(A+B\right)^2\left(A+B\right)=\left(A^2+2AB+B^2\right)\left(A+B\right)\)( NHÂN  ra nốt hộ mk nha ) :D !

c)\(\left(A+B\right)\left(A-B\right)=A^2+AB-AB-B^2=A^2-B^2\)

ý d tương tự nha :D !

27 tháng 7 2023

1) \(\left(a+b\right)^2\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\left(dpcm\right)\)

2) \(\left(a-b\right)^3\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)

27 tháng 7 2023

`a)` 

`(a+b)^2`

`=(a+b)(a+b)`

`=a^2+ab+ab+b^2`

`=a^2+2ab+b^2`

`->` ĐPCM

`b)` `(a-b)^3`

`=(a-b)(a-b)(a-b)`

`=(a^2-2ab+b^2)(a-b)`

`=a^3-3a^2b+3ab^2-b^3`

`->` ĐPCM

10 tháng 8 2016

a) VP= (a-b)^2 + 4ab 

= a^2 - 2ab + b^2 + 4ab

= a^2 + 2ab + b^2 

= (a+b)^2 = VT

Vậy ...

b) VP= (a+b)^2 - 4ab 

= a^2 + 2ab + b^2 - 4ab

= a^2 - 2ab + b^2

= (a-b)^2 = VT

Vậy....

c) VP= (a+b)^3 - 3ab (a+b) 

= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2 

= a^3 + b^3  = VT

Vậy ....

10 tháng 8 2016

a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

Vậy: (a+b)2 = (a-b)2 + 4ab.

b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy: (a-b)2 = (a+b)2 - 4ab

c) Ta có:  \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)

Đúng nha!!

17 tháng 8 2015

(a+b)3=(a+b)(a+b)(a+b)

=a(a+b)(a+b)+b(a+b)(a+b)

=(a2+ab)(a+b)+(ab+b2)(a+b)

=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)

=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3

=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3

=a3+3a2b+3ab2+b3

vậy (a+b)= a3 +3a2b +3ab+ b3 =>dpcm