K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(x^3-6x^2+11x-6\)

\(=x^3-x^2-5x^2+5x+6x-6\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

b: \(x^3-6x^2-9x+14\)

\(=x^3-7x^2+x^2-7x-2x+14\)

\(=\left(x-7\right)\left(x^2+x-2\right)\)

\(=\left(x-7\right)\left(x+2\right)\left(x-1\right)\)

c: \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

28 tháng 6 2020

a) x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4 > 0 => đa thức vô nghiệm

b) x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4 > 0 => đa thức vô nghiệm

c) x2 - 6x + 10 = (x2 - 6x + 9) + 1 = (x - 3)2 + 1 > 0 => đa thức vô nghiệm

d) 9x2 + 6x + 2 = (9x2 + 6x + 1) + 1 = (3x + 1)2 + 1 > 0 => đa thức vô nghiệm

e) -2x2 + 8x - 11 = -2(x2 - 4x + 4) -3 = -2(x - 2)2 - 3 < 0 => đa thức vô nghiệm

g) -3x2 + 2x - 4 = -3(x2 - 2/3x + 1/9) - 11/3 < 0 => đa thức vô nghiệm

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

4 tháng 8 2020

Bài 1 : Phân tích các đa thức sau thành nhân tử : ( tách một hạn tử thành nhiều hạng tử )
a, 3x2 + 9x - 30

= 3(x2 + 3x - 10)

= 3(x2 + 5x - 2x - 10)

= 3[x(x + 5) - 2(x + 5)]

= 3(x + 5)(x - 2)

b, x2 - 3x + 2

= x2 - x - 2x + 2

= x(x - 1) - 2(x - 1)

= (x - 1)(x - 2)
c, x2 - 9x + 18

= x2 - 6x - 3x + 18

= x(x - 6) - 3(x - 6)

= (x - 6)(x - 3)
d, x2 - 6x + 8

= x2 - 4x - 2x + 8

= x(x - 4) - 2(x - 4)

= (x - 4)(x - 2)
e, x2 - 5x - 14

= x2 + 2x - 7x - 14

= x(x + 2) - 7(x + 2)

= (x + 2)(x - 7)
f, x2 + 6x + 5

= x2 + x + 5x + 5

= x(x + 1) + 5(x + 1)

= (x + 1)(x + 5)
h, x2 - 7x + 12

= x2 - 3x - 4x + 12

= x(x - 3) - 4(x - 3)

= (x - 3)(x - 4)
i, x2 - 7x + 10

= x2 - 2x - 5x + 10

= x(x - 2) - 5(x - 2)

= (x - 2)(x - 5)

#Học tốt!

20 tháng 8 2020

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

b) \(x^3-x^2-5x+125\)

\(=\left(x^3+125\right)-\left(x^2+5x\right)\)

\(=\left(x^3+5^3\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)

\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)

\(=\left(x-3\right)\left(x^2+x+9\right)\)

e) \(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

f) \(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)

\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)

I. Trắc nghiệm Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là : A. 8 B. 4 C. 6 D. 16 Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2 A. Đúng B. Sai Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27 A. Đúng B. Sai Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + ...
Đọc tiếp

I. Trắc nghiệm
Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là :
A. 8 B. 4 C. 6 D. 16
Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2
A. Đúng B. Sai
Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27
A. Đúng B. Sai
Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + 6xy^2 - y^3 tại x = 1/2, y = 1
A. 1/4 B. 27/8 C. -3/4 D. 0
Câu 5 : Rút gọn biểu thức B = ( x + 2 )^3 - ( x - 2 )^3 - 12x^2 ta thu đc kết quả là :
A. 16 B. 2x^3 + 24x C. x^3 + 24x^2 + 16 D. 0
Câu 6 : x^2 - 1 =
A. ( x -1 ) ( x + 1 ) B. ( x + 1 ) ( x + 1 ) C. x^2 + 2x + 1 D. x^2 - 2x - 1
Câu 7 : x^2 - 10xy + 25y^2 = ( 5 - y )^2
A. Đúng B. Sai
Câu 8 : Tính giá trị cuả các biểu thức : A = 4x^2 - 6xy + 9y^2 tại x = 1/2, y = 2/3
A. 4 B. 1/4 C. -1 D. 1
Câu 9 : Rút gọn biểu thức A = ( x - 2 )^2 - ( x - 3 )^2 + ( x + 4 )^2 thu đc kết quả :
A. x^2 + 10x + 11 B. 9x^2 - 1 C. 3x^2 - 9 D. x^2 - 9
Câu 10 : Giá trị nhỏ nhất của biểu thức A = 9x^2 - 6x + 4 đạt đc khi x bằng
A. 2 B. 3 C. 1/3 D.
Giúp mk vs ạ mk đang cần gấp


0