Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT đã cho sai.
Phản ví dụ: \(x=y=z=1\Rightarrow\left\{{}\begin{matrix}2\left(x^2+y^2+z^2\right)=6\\\left(x+y+z\right)^2=9\end{matrix}\right.\)
Do đó \(2\left(x^2+y^2+z^2\right)< \left(x+y+z\right)^2\)
BĐT đúng phải là: \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
Ta có: \(\left\{{}\begin{matrix}a^3-3ab^2=19\\b^3-3a^2b=98\end{matrix}\right.\) => \(\left\{{}\begin{matrix}\left(a^3-3ab^2\right)^2=19^2=361\\\left(b^3-3a^2b\right)^2=98^2=9604\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a^6-6a^4b^2+9a^2b^4=361\\b^6-6a^2b^4+9a^4b^2=9604\end{matrix}\right.\)
=> \(a^6+b^6+\left(9a^2b^4-6a^2b^4\right)+\left(9b^2a^4-6a^4b^2\right)=9965\)
=> \(a^6+3a^2b^4+3a^4b^2+b^6=9965\)
=> \(\left(a^2+b^2\right)^3=9965\)
=> \(a^2+b^2=\sqrt[3]{9965}\)
10a^2 + 6ab- 5ab - 3b^2=0 <=>
<=> (2a-b)(3a+5b)=0 <=>2a = b hoặc 3a = -5b(loại vi b>a>0)
Thay 2a = b vào vế trái ta có
\(\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=0+\frac{9}{5}=\frac{9}{5}\)
Vậy vế trái bằng vế phải đẳng thức được chứng minh
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
\(3a^3+7b^3\ge3a^3+6b^3\)
\(=3a^3+3b^3+3b^3\)
\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)
Dấu = xảy ra khi a = b = 0
\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)
Bài 2 : Đề thiếu ! Nếu tìm n thì đến đây là không làm được nữa nha bạn !
\(n^5-n=n\left(n^4-1\right)\) \(⋮\text{ }30\)
khi \(\orbr{\begin{cases}n\text{ }⋮\text{ }30\\n^4-1\text{ }⋮\text{ }30\end{cases}}\)
Thầy ra đề có nhiêu đó thôi, bài đó mình tính ra được n (n - 1)(n + 1)(n2 + 1) thì bí rồi
Ta có:
\(VT=a^2+4b^2+25-4ab+10a-20b+\left(b^2-2b+1\right)+2\)
\(VT=\left(a-2b+5\right)^2+\left(b-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=-3\\b=1\end{matrix}\right.\)
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)
\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)
\(\Leftrightarrowđcpm\)