K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

bạn sử dụng BĐT SVACXO

18 tháng 3 2017

Không biết bất đẳng thức SVACXO là bất đẳng thức gì . Giúp mình với cần gấp.

AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
a. Áp dụng BĐT Cô-si:

$\frac{1}{a}+\frac{a}{4}\geq 1$

$\frac{1}{b}+\frac{b}{4}\geq 1$

$\frac{1}{c}+\frac{c}{4}\geq 1$

Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$
b.

Áp dụng BĐT Cô-si:

$\frac{a^2}{c}+c\geq 2a$

$\frac{b^2}{a}+a\geq 2b$

$\frac{c^2}{b}+b\geq 2c$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$

18 tháng 3 2017

Do a, b, c >0

=> a+b+c>0 và \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) >0

Áp dụng bất đẳng thức Cô si ta có:

\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) 3 \(\sqrt[3]{\dfrac{a^2b^2c^2}{abc}}\) = 3\(\sqrt[3]{abc}\)

a+b+c \(\ge\) 3 \(\sqrt[3]{abc}\)

=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) - (a+b+c) \(\ge\) 3\(\sqrt[3]{abc}\) - 3\(\sqrt[3]{abc}\)

=>\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\)- (a+b+c) \(\ge\) 0

=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) a+b+c (dpcm)

19 tháng 3 2017

thế nếu lấy cái (a+b+c)-(...) =0 thì s

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

20 tháng 1 2020

Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...

Chúc bạn học tốt!

20 tháng 1 2020

@Băng Băng 2k6

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Đặt A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(A+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\)

\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)

\(A+3=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

CM:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow A+3\ge\left(a+b+c\right)\left(\dfrac{9}{a+b+b+c+c+a}\right)=\dfrac{9}{2}\)

\(\Rightarrow A\ge\dfrac{3}{2}\left(đpcm\right)\)

1 tháng 5 2022

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)

 

a)Áp dụng bđt AM-GM cho 6 số không âm a+b,b+c,c+a ta được

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

TT\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Nhân vế theo vế ta được:\(2\left(a+b+c\right)\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

5 tháng 4 2018

Cám ơn bạn nhiều nha^-^

7 tháng 9 2017

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

7 tháng 9 2017

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !