Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}<\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)
\(=\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}=\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)
Vì n > 2 nên \(\frac{1}{n\left(n+1\right)}\le\frac{1}{6}\)
Do đó \(\frac{1}{2}-\frac{1}{n\left(n+1\right)}<\frac{1}{4}\)
=> ĐPCM
Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)
Lấy 5A trừ A theo vế ta có :
5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)
4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
Lấy 5B trừ B ta có :
=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)
=> 4B =\(1-\frac{1}{5^{11}}\)
=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)
Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)
=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)
cậu ơi , mình quên không ghi 1 dữ liệu ạ
n thuộc N
V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
1/
+) \(\frac{3}{6}=\frac{2}{4};\frac{3}{2}=\frac{6}{4};\frac{4}{6}=\frac{2}{3};\frac{4}{2}=\frac{6}{3}\)
2/
\(A=\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\)
Để A nguyên <=> n + 4 thuộc Ư(17) = {1;-1;17;-17}
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy...
3/
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
\(A=\frac{3n+12-7}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{7}{n+4}=3-\frac{7}{n+4}\)
=> n-4 \(\in\) Ư (7)
n-4=1
n=4+1=5
n-4=-1
n=-1+4=3
n-4=7
n=4+7=11
n-4=-7
n=-7+4=-3
100A = \(\frac{99}{1}+1+\frac{98}{2}+1+...+\frac{1}{99}+1-99\)
100A=\(\frac{100}{1}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}-99\)
100A =\(\left(\frac{100}{2}+\frac{100}{3}+..+\frac{100}{99}+100-99\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\right)\)
100A=100.\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)
50A= 1201
A=1201:50
A=\(\frac{1201}{10}\)=120.1
mà 120,1 ko phải số tự nhiên mà là số thập phân
=>A ko là số tự nhiên
Giải:
Các cặp phân số bằng nhau lập được từ đẳng thưc 3.4 = 6.2 là :
\(\frac{3}{6}=\frac{2}{4}\); \(\frac{6}{2}=\frac{4}{2}\); \(\frac{4}{6}=\frac{2}{3}\); \(\frac{3}{2}=\frac{6}{4}\)
Vậy ...
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.