Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=2-\frac{100}{2^{99}}+\frac{100}{2^{100}}< 2-\frac{100}{2^{100}}+\frac{100}{2^{100}}=2\)
\(\Rightarrow A< 2\Leftrightarrow\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}< 2\left(đpcm\right).\)
\("!"\) là giai thừa đó bạn ạ .
\(VD:\) \(3!=1.2.3=6\)
\(4!=1.2.3.4=24\)
\(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< 1-\frac{1}{100}< 1\)
\(=>đpcm\)
Ủng hộ mk nha ^_-