K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

Đề của bạn là :

  Chứng minh :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{4^2}+\frac{1}{n^2}\)

          Có đúng không bạn .

6 tháng 8 2019

Tick và theo dõi mik nhá!

Tham khảo: bài 3

Lũy thừa của một số hữu tỉ

6 tháng 8 2019
https://i.imgur.com/e81eWkc.jpg
18 tháng 7 2015

câu này khó tớ không làm được mong các bạn giải hộ tớ

 

 

22 tháng 10 2017

a) 3-2 . 34 . 3n = 37

=> 3-2+4+n = 37

=> 32+n = 37

=> 2 + n = 7

=> n = 5

Vậy n = 5

22 tháng 10 2017

a) 3-2. 34.3n = 37

3-2 + 4 + n = 37

32 + n = 37

2 + n = 7

n = 5

Vậy n = 5

b) 2-1.2n + 4.2n = 9.25

2n(2-1 + 4) = 9.25

2n. \(\frac{9}{2}\) = 9.25

2n = 9.25 : \(\frac{9}{2}\)

2n = 64

2n = 26

n = 6

Vậy n = 6

c) 32 < 2n < 128

25 < 2n < 27

5 < n < 7

=> n = 6

Vậy n = 6

d) 44 \(\leq \) 4n \(\leq \) 4096

44 \(\leq \) 4n \(\leq \) 46

4 \(\leq \) n \(\leq \) 6

=> n = 5

Vậy n = 5

mk ko chắc câu d nhé

4

5 tháng 11 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{n+1}< 1\)=> Q < 1 (đpcm)

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

a) \(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(M=(100^-99^2)+(98^2-97^2)+...+(2^2-1^2)\)

\(=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)\)

\(=100+99+98+97+...+2+1\)

\(=\frac{100(100+1)}{2}=5050\)

b) \(N=(20^2-19^2)+(18^2-17^2)+...+(2^2-1^2)\)

\(=(20-19)(20+19)+(18-17)(18+17)+...+(2-1)(2+1)\)

\(=20+19+18+17+...+2+1=\frac{20(20+1)}{2}=210\)

c) \(P=(-1)^n(-1)^{2n+1}(-1)^{n+1}\)

\(P=(-1)^{n+2n+1+n+1}=(-1)^{4n+2}=(-1)^{2(2n+1)}=1\)

a)=3^4<3.n<3^10

=>n=4;5;6;7;8;9

b)5^2<5^n-1<5^4

=>n-1=3=>n=4

c)5.5^2n==5^6

=>5^2n+1=5^6

=>n=7/2