Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Cauchy-Schwarz ta có:
(12+12+12)(x2+y2+z2)≥(x+y+z)2(12+12+12)(x2+y2+z2)≥(x+y+z)2
⇒3(x2+y2+z2)≥(x+y+z)2⇒3(x2+y2+z2)≥(x+y+z)2
⇒3(x2+y2+z2)≥(x+y+z)2=12=1⇒3(x2+y2+z2)≥(x+y+z)2=12=1
⇒x2+y2+z2≥13⇒x2+y2+z2≥13
Đẳng thức xảy ra khi x=y=z=13x=y=z=13
b) Áp dụng BĐT Cauchy-Schwarz ta có:
(4+1)(4x2+y2)≥(4x+y)2(4+1)(4x2+y2)≥(4x+y)2
⇒5(4x2+y2)≥(4x+y)2⇒5(4x2+y2)≥(4x+y)2
⇒5(4x2+y2)≥(4x+y)2=12=1⇒5(4x2+y2)≥(4x+y)2=12=1
⇒4x2+y2≥15⇒4x2+y2≥15
Đẳng thức xảy ra khi x=y=15x=y=15
\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{k+2-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)
\(=\frac{1}{2}\left[\frac{k+1-k}{k\left(k+1\right)}-\frac{\left(k+2\right)-\left(k+1\right)}{\left(k+1\right)\left(k+2\right)}\right]\)
\(=\frac{1}{2}\left(\frac{1}{k}-\frac{1}{k+1}-\frac{1}{k+1}+\frac{1}{k+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2005^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2004.2005}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}=\frac{2004}{2005}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2005^2}< \frac{2004}{2005}\left(\text{đ}pcm\right)\)
ta có (a-1)2 ≥ 0 ∀a
<=> a2-2a+1 ≥ 0
<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)
<=> a2+2a+1 ≥ 4a
<=> (a+1)2 ≥ 4a
CM tương tự ta đc
(b+1)2 ≥ 4b
(c+1)2 ≥ 4c
Nhân các vế với nhau ta có
[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)
<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)
Cách 1:Ta có: \(2\left(1+a^2\right)\ge\left(1+a\right)^2\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{1}{\left[2\left(1+a^2\right)\right]}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\)
mà: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+x^2y^2+x^2+y^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{\left[2.\left(1+xy\right)+\left(x-y\right)^2\right]}{\left(1+xy\right)^2+\left(x-y\right)^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge2.\frac{1+xy}{\left(1+xy\right)^2}\)
\(\Rightarrow\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\ge\frac{1}{1+xy}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
TL :
Vì 1 + 1 = 2
HT
.