K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+......................+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{98}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+..............+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{99}}\right)\)\(\Leftrightarrow2A=1-\dfrac{1}{3^{99}}< 1\)

\(\Leftrightarrow A< 1\)

Vậy \(\dfrac{1}{3}+\dfrac{1}{3^2}+..............+\dfrac{1}{3^{99}}< 1\rightarrowđpcm\)

7 tháng 7 2017

Đặt:

\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+.....+\dfrac{1}{3^{99}}\)

\(3S=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{99}}\right)\)

\(3S=1+\dfrac{1}{3}+.....+\dfrac{1}{3^{98}}\)

\(3S-S=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{99}}\right)\)

\(2S=1-\dfrac{1}{3^{99}}\)

\(2S< 1\)

\(S< 1\rightarrowđpcm\)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

18 tháng 9 2017

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)....................\left(\dfrac{1}{10^2}-1\right)\)

\(=\left(\dfrac{1}{4}-\dfrac{4}{4}\right)\left(\dfrac{1}{9}-\dfrac{9}{9}\right)...........\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(=\dfrac{-3}{4}.\dfrac{-8}{9}..............\dfrac{-99}{100}\)

\(=\dfrac{\left(-1\right).3}{2.2}.\dfrac{\left(-2\right).4}{3.3}..................\dfrac{\left(-9\right).11}{10.10}\)

\(=\dfrac{\left(-1\right)\left(-2\right)..........\left(-9\right)}{2.3.....10}.\dfrac{3.4....11}{2.3....10}\)

\(=\dfrac{-1}{10}.\dfrac{11}{2}\)

\(=\dfrac{-11}{20}< \dfrac{-10}{20}=\dfrac{-1}{2}\)

\(\Leftrightarrow A< \dfrac{-1}{2}\)

18 tháng 9 2017

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{10^2}-1\right)\)

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right).....\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{4}-\dfrac{4}{4}\right)\left(\dfrac{1}{9}-\dfrac{9}{9}\right)....\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.....\dfrac{-99}{100}\)

\(A=\dfrac{\left(-1\right).3}{4}.\dfrac{\left(-1\right).8}{9}......\dfrac{\left(-1\right).99}{100}\)

\(A=\dfrac{\left(-1\right).1.3}{2.2}.\dfrac{-1.2.4}{3.3}....\dfrac{-1.9.11}{10.10}\)

\(A=\dfrac{-1.3}{2.2}.\dfrac{-2.4}{3.3}....\dfrac{-9.11}{10.10}\)

\(A=\dfrac{\left(-1\right)\left(-2\right)....\left(-9\right)}{2.3.....10}.\dfrac{3.4....11}{2.3.....10}\)

\(A=\dfrac{-1}{10}.\dfrac{11}{2}=-\dfrac{11}{20}\)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

19 tháng 7 2018

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}=P\)

Vậy \(S=P\)

7 tháng 4 2017

Bài 2:
a, Có: \(3^x=28-3^{x+3}\)
\(\Leftrightarrow3^x+3^{x+3}=28\)
\(\Leftrightarrow3^x+3^x.3^3=28\)
\(\Leftrightarrow3^x\left(1+3^3\right)=28\)
\(\Leftrightarrow3^x.28=28\)
\(\Leftrightarrow3^x=1\)
=> x = 0
Vậy x=0 là giá trị cần tìm

b, Đặt \(\left|x-1\right|=t\left(t\ge0\right)\)
Phương trình đã cho trở thành: \(t^2-2t=0\)
\(\Leftrightarrow t\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) (TMĐK)
Với t =0 ta có | x-1 | =0
=> x-1=0
=> x=1
Với t=2 ta có |x-1| =2
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy các số nguyên x cần tìm là x=1 hoặc x=-1

7 tháng 4 2017

Em cảm ơn chị nhiều, chị giúp em bài bài nữa được không ạ

25 tháng 3 2017

Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)

Vậy \(\left(P-S\right)^{2013}=0\)

30 tháng 4 2018

Hay quá