Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
=> 1/2+1/3+…+1/63>2
t i c k nhé !! 5756876876978080
Ta có:
\(\frac{1}{2}=\frac{1}{2}\)
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+...+\frac{1}{8}>4.\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}>4.\frac{1}{2}=2\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
\(A=\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
\(A=\left(\frac{\frac{3}{2}+1-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{1}{2}-\frac{5}{11}-\frac{5}{12}}\right):\frac{378}{401}+115\)
\(A=\left(\frac{3.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{-3.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}{5.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}\right).\frac{401}{378}+115\)
\(A=\left(\frac{3}{5}+\frac{-3}{5}\right).\frac{401}{378}+115\)
\(A=0.\frac{401}{378}+115=115\)
A = \(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{\frac{3}{2}+\frac{3}{3}-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3.125}{100}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5.125}{100}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{3\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3}{5}+-\frac{3}{5}\right):\frac{1890}{2005}+115\)
= 115