Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
Giải thích các bước giải:
a.Ta có :
3n+12⋮n+23n+12⋮n+2
→3n+6+6⋮n+2→3n+6+6⋮n+2
→3(n+2)+6⋮n+2→3(n+2)+6⋮n+2
→6⋮n+2→6⋮n+2
→n+2∈{1,2,3,6,−1,−2,−3,−6}→n+2∈{1,2,3,6,−1,−2,−3,−6}
→n∈{−1,0,1,4,−3,−4,−5,−8}→n∈{−1,0,1,4,−3,−4,−5,−8}
b.Gọi (2n+3,4n+8)=d(2n+3,4n+8)=d
→{2n+3⋮d4n+8⋮d→{2n+3⋮d4n+8⋮d
→4n+8−2(2n+3)⋮d→2⋮d→4n+8−2(2n+3)⋮d→2⋮d
Vì 2n+3⋮d→d2n+3⋮d→d lẻ
→d=1→d=1
→2n+3,4n+8→2n+3,4n+8 là hai số nguyên tố cùng nhau.
c.Gọi (3n+4,5n+1)=d(3n+4,5n+1)=d
→{3n+4⋮d5n+1⋮d→{3n+4⋮d5n+1⋮d
→5(3n+4)−3(5n+1)⋮d→5(3n+4)−3(5n+1)⋮d
→17⋮d→17⋮d
→→Để (3n+4,5n+1)=1(3n+4,5n+1)=1
→d=1→d=1
→17⋮̸d→17⋮̸d
→3n+4⋮̸17→3n+4⋮̸17
→3n+4≠17k→3n+4≠17k
→3n≠17k−4→3n≠17k−4
→3n≠17(3q+2)−4,k=3q+2→3n≠17(3q+2)−4,k=3q+2
→3n≠51q+30→3n≠51q+30
→n≠17q+10,q∈N→n≠17q+10,q∈N
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:
(2n-1+1)n:2=n.n=n2
=>đpcm
Số số hạng là :
(2n + 1 - 1) : 2 + 1 = n + 1 (số hạng)
Do đó \(M=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2.\left(n+1\right).\left(n+1\right)}{2}=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
Vậy M là số chính phương
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=> A là số chính phương
b) B có số số hạng là : (2n-2):2+1= n (số)
=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)
=> B không là số chính phương.
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
Gọi ƯCLN(2n+5, n+2)=d
Ta có: 2n+5 chia hết cho d
n+2 chia hết cho d suy ra 2.(n+2) chia hết cho d suy ra 2n+4 chia hết cho d.
Suy ra 2n+5 - 2n+4 chia hết cho d
Suy ra 1 chia hết cho d.
Suy ra d thuộc ước của 1 ={1}
Vậy ƯCLN( 2n+5, n+2)=1.( đpcm)