K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

a, Vì 

\(\sqrt{21}-\sqrt{5}=2346507717\)

\(\sqrt{20}-\sqrt{6}=2022646212\)

b, Vì

\(\sqrt{2}+\sqrt{8}=4242640687\)

\(\sqrt{3}+3=4732050808\)

c, Vì

\(\sqrt{5}+\sqrt{10}=5398345638\)

\(5,3=5,3\)

P/s; Ủa tôi tưởng lớp 8 mới học về Căn thức chứ

29 tháng 10 2017

Ta biết căn( \(\sqrt{ }\)) càng lớn thì càng chia ra số nhỏ

=> a >

b<

c>

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)

27 tháng 11 2016

a)>

b)<

c)>

27 tháng 11 2016

a, >

b, <

c, >

31 tháng 7 2017

a, \(\sqrt{21}>\sqrt{20}\)

\(-\sqrt{5}>-\sqrt{6}\)

\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b, \(\sqrt{2}< \sqrt{3}\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)

5 tháng 11 2017

b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

.............................................

Cộng với vế 99 của BĐT trên, ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 11 2017

Wrecking Ball đã làm đúng

to ra kết quả giống cậu : Wrecking Ball

là đáp án đúng

tk nha ( chúc bn học gioi )

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

25 tháng 9 2015

ta có :

\(\sqrt{21}\)>\(\sqrt{20}\)

\(\sqrt{6}\)>\(\sqrt{5}\)

=>\(\sqrt{21}\)+\(\sqrt{6}\)>\(\sqrt{20}\)+\(\sqrt{5}\)

=>\(\sqrt{21}\)-\(\sqrt{5}\)>\(\sqrt{20}\)-\(\sqrt{6}\)(chuyển vế ý mà :D)

vậy ...

25 tháng 9 2015

\(21>20\Rightarrow\sqrt{21}>\sqrt{20}\)

\(5<6\Rightarrow\sqrt{5}<\sqrt{6}\Rightarrow-\sqrt{5}>-\sqrt{6}\)

\(\text{Suy ra: }\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

14 tháng 11 2022

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà 105<120

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\sqrt{8}+\sqrt{2}=\dfrac{6}{\sqrt{8}-\sqrt{2}}\)

\(3+\sqrt{3}=\dfrac{6}{3-\sqrt{3}}\)

mà căn 8<3; -căn 2>-căn 3

nên \(\sqrt{8}+\sqrt{2}< 3+\sqrt{3}\)