K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

 \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)mà \(1>0\) nên \(\left(x-2\right)+1>0\)

Vậy \(x^2-4x+5>0\)

 

\(6x-x^2-10=-x^2+6x-9-1=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Vì   \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2-1\le-1\)mà \(-1<0\)  Nên  \(-\left(x-3\right)^2-1<0\)

Vậy  \(6x-x^2-10<0\)

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

15 tháng 8 2016

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

15 tháng 8 2016

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

15 tháng 8 2015

a) Ta có :

 \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\)  với mọi x 

Vậy \(x^2+6x+10>0\)

b) tương tự 

15 tháng 8 2015

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>0 với mọi x ( vì (x-3)2\(\ge\)0 với mọi x)

b) 4x-x2-5=-x2+4x-4-1=-(x2+4x+4)2-1= -(x-2)2-1<0 với mọi x (vì -(x-2)2\(\le\)0 với mọi x)

22 tháng 7 2020

a.4x^2-12x+15 = 0; vô nghiệm vì vế trái = 4x^2-12x+15=(2x)^2-2.3.(2x)+3^2+6=(2x-3)^2+6>=6 nên vế trái>0

22 tháng 7 2020

b) Ta có 6x - x2 - 10 

= -x2 - 3x - 3x - 10

= -x(x + 3) - 3x - 9 - 1

= -x(x + 3) - 3(x + 3) - 1

= -(x + 3)(x + 3) - 1

= -(x + 3)2 - 1 = -[(x + 3)2 + 1]

Ta có \(\left(x+3\right)^2+1\ge\forall x\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1< 0\)

=> 6x - x2 - 10 < 0 \(\forall\)x

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

4 tháng 7 2016

bài 1 phân tích da thức hả bạn

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y