Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
Chứng tỏ rằng :
a) 1+5+52+53+.......+5501 \(⋮\)6
b) 2+22 +23 +.. + 2100 vừa \(⋮\)31, vừa \(⋮\) cho 5
a/ \(1+5+5^2+..........+5^{501}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)
\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)
\(=1.6+5^2.6+.............+5^{500}.6\)
\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)
b/ \(2+2^2+2^3+............+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+..........+2^{96}.31\)
\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)
a)1+5+5^2+5^3+........+5^501
= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)
=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)
=6+150(5^2+5^3+.......+5^500)
mà 6 chia hết cho 6
150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6
=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6
=> 1+5+5^2+5^3+........+5^501 chia hết cho 6
2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
Giải:
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)
\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)
\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)
\(A< 1-\dfrac{1}{9}.\)
\(A< \dfrac{8}{9}_{\left(1\right)}.\)
Ta lại có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)
\(A>\dfrac{4}{10}.\)
\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\).
\(\Rightarrow A< \dfrac{8}{9}\) và \(A>\dfrac{2}{5}.\)
\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
Vậy ta thu được \(đpcm.\)
~ Học tốt!!!... ~ ^ _ ^
Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến
a, A = 2 + 22 + 23 + 24 +....+ 260
A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)
A = 2.3 + 23.3 +...+ 259.3
A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)
A = 2 + 22 + 23+ 24+...+ 260
A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)
A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)
A = 2.7 + 24.7 +...+258.7
A = 7.(2 + 24 + ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)
A = 2 + 22 + 23 + 24 +...+ 260
A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)
A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)
A = 2.30 + ...+ 257. 30
A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp
\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)
\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3.\left(2^9+2^7+...+2\right)⋮3\)
P/S: mấy bài khác tương tự
\(a,2^{10}+2^9+2^8+...+2\)
\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)
\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)
\(b,1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)
\(c,1+5+5^2+5^3+...+5^{1975}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)
\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)
\(=6+5^2.6+...+5^{1974}.6\)
\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)