Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Bài giải:
+ Nếu \(n⋮2\)thì bài toán đã đc giải.
+ Nếu \(n\)không chia hết cho \(2\)thì \(n\)có dạng: \(2k+1\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+1+5\right)=\left(2k+1\right)\left(2k+6\right)\)\(=\left(2k+1\right).2.\left(k+3\right)⋮2\)\(\forall n\inℕ\)
Vậy: Với mọi \(n\inℕ\)thì \(n.\left(n+5\right)⋮2\)
~ Rất vui vì giúp đc bn ~
Chứng minh bằng quy nạp toán học :
1. n = 1 => n2 + 5n = 12 + 5.1= 1 + 5 = 6 , vậy mệnh đề đúng với n = 1
2. Giả sư mệnh đề đúng với k,nghĩa là ta có : \(\left[k^2+5k\right]⋮2\)
Ta chứng minh mệnh đề cũng đúng với k + 1,nghĩa là phải chứng minh :
\(\left[\left\{k+1\right\}^2+5\left\{k+1\right\}\right]⋮2\)
Ta có : \((k+1)^2+5(k+1)=k^2+2k+1+5k+5\)
\(=\left[k^2+5k\right]+2\left[k+3\right],k\inℕ\)
Nhưng \(\left[k^2+5k\right]⋮3\)[gt quy nạp] ; \(2(k+3)⋮2\)
Vậy : \(\left[\left\{k+1\right\}^2+5\left\{k+1\right\}\right]⋮2\). Vậy mệnh đề trên đúng với mọi n thuộc N.
P/S : Nhức đầu quá :vv
Trong một tích có một thừa số chẵn thì tích đấy chẵn
Giả sử n là số lẻ thì n+3 là số chẵn ( lẻ + lẻ = chẵn ) , suy ra tích là số chẵn
n là số chẵn n+6 là số chẵn ( chẵn + chẵn = chẵn ) , suy ra tích là số chẵn
Kết luận : tích (n+3)( n+6) luôn chia hết cho 2 với mọi số tự nhiên n
+ Nếu n =2k
=> (n+3)(n+6) =(n+3)(2k+6) =2(n+3)(k+3) chia hết cho 2
+Nếu n =2k +1
=> (n+3)(n+6) = ( 2k+1+3)(n+6) =(2k+4)(n+6) =2(k+2)(n+6) chia hết cho2
=> (n+3)(n+6) luôn chia hết cho 2
(n+3).(n+6)=A
nếu n chia hết cho 2 suy ra (n+6) chia hết cho 2suy ra A chia hết cho 2 (1)
nếu n không chia hết cho 2 (lẻ) suy ra (n+3) chia hết cho 2 suy ra A chia hết cho 2 (2)
Từ (1) và (2) suy ra đpcm
(n+3)(n+6) chia hết cho 2 <=> n(3+5)+n
=n.8 +n
Vì 8 chia hết cho 2 => n.8+n chia hết cho 2
Vậy (n+3)(n+6) chia hết cho 2 , k cho mik nha
Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+6) chia hết cho 2
Nếu n là số lẻ thì ta có: (n+3) là số lẻ
(n+6) là số chẵn
Vậy ((n+3).(n+6)) chia hết cho 2
Còn nếu n là số chẵn thì ngược lại
Bài giải
* Nếu n lẻ thì n + 3 là số chẵn \(⋮\) 2 \(\Rightarrow\) Tích ( n + 3 ) ( n + 6 ) \(⋮\) 2
* Nếu n chẵn thì ( n + 6 ) \(⋮\) 2 \(\Rightarrow\) ( n + 3 ) ( n + 6 ) \(⋮\) 2
Vậy với mọi số tự nhiên thì \(\left(n+3\right)\left(n+6\right)\text{ }⋮\text{ }2\)
Th1: n là số lẻ
=> (n + 3) sẽ là số chẵn => (n + 3) \(⋮\)2 => (n + 3)(n + 6) \(⋮\)2
Th2: n là số chẵn
=> (n + 6) là số chẵn =>(n + 6) \(⋮\)2 => (n + 3)(n + 6) \(⋮\)2
Vậy với mọi số tự nhiên n thì (n + 3)(n + 6) \(⋮\)2