K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

A = 2 + 2+ 23 + 24 + ..... + 29 + 210

A = (2 + 22) + (23 + 24) + ..... + (29 + 210)

A = (2.1 + 2.2) + (23.1 + 23.2) + ..... + (29.1 + 29.2)

A = 2.(2 + 1) + 23.(2 + 1) + ...... + 29.(2 + 1)

A = 2.3 + 23.3 + ..... + 29.3 

A = 3.(2 + 23 + .... + 29

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

16 tháng 12 2018

A = 2 + 22 + 2 + 24 + 25 + 26 + 27 + 28 + 29 + 210

A = ( 2 + 22 ) + ( 23 + 24 ) + ( 25 + 26 ) +  ( 27 + 28 ) + ( 29 + 210 )

A =  2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + 25 . ( 1 + 2 ) + 27 . ( 1+ 2 ) + 29 . ( 1 + 2 )

A =    2 . 3   +   23 . 3 +  25 . 3 +  27 . 3  +  29 . 3

A =   3 . ( 2 + 23 + 25 + 27 + 29 )

=> A  chia hết cho 3

16 tháng 12 2018

\(2+2^2=2.1+2.2=2.3\)

\(2^3+2^4=2^3.1+2^3.2=2^3.3\)

.........

\(2^9+2^{10}=2^9.1+2^9.2=2^9.3\)

Thay vào A, ta có:

\(A=2.3+2^3.3+...+2^9.3\)

\(A=3.\left(2+2^3+...+2^9\right)⋮3\)

Vậy \(A⋮3\)

11 tháng 12 2017

A= (2+22) + (23+24) + (25+26) + (27+28) + (29+210) = 2(1+2) +23(1+2) +...+ 29(1+2) = 2.3 + 23.3 +...+29.3 = 3(2+23+..+29) chia hết cho 3.

8 tháng 12 2016

Ta có A= ( 2+ 2 2 +23) +.....+ (28+29+210 )

          A=2.(1+2+22)+...+28..(1+2+22)

      A =2.7+......+28.7

A=(2+...+28). 7 : 7

=. A chia hết cho 7

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

7 tháng 4 2016

A = ( 2+22+23) + (24+25+26) + (27+28+29)+  (210+211+212)

A = 2.(1+2+22) +24.(1+2+22) +27.(1+2+22)+ 210.(1+2+22)

A = 2.7+24.7 +27.7+ 210.7

A = 7.( 2+24+27+210)

Suy ra A chia hết cho 7

7 tháng 4 2016

A=2+22+23+24+25+26+27+28+29+210+211+212

=2(1+2+22)+24(1+2+22)+27(1+2+22)+210(1+2+22)

=2.7+2.7+2.7+2.7

Vậy A chia hết cho 7

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5

28 tháng 12 2017

Câu 1/     \(A=1+7+7^2+7^3+7^4+7^5\)       Nhân hai vế với 7 được :

\(7A=7+7^2+7^3+7^4+7^5+7^6\)   Do đó : \(6A=7^6-1\)  (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)

Suy ra :  \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)

(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8

Câu 2/  Chứng tỏ :  (2n + 5) chia hết cho (n + 1)  .Câu này đề sai .Khi n = 1 đã sai rồi . 

Câu 3 : Giải tương tự câu 1

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).