K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Ta có 

 ab + ba =10a+b+10b+a

              =(10a+a)+(10b+b)

              =11a+11b=11(a+b)

=> ab + ba chia hết cho 11.

16 tháng 10 2018

ta có:

ab+ba=(a.10+b)+(b.10+a)=a.11+b.11

vì 11chia hết cho 11 => (a+b).11 chia hết cho 11

=> ab+ba chia hết cho 11 

         k nha

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

18 tháng 5 2017

Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)

\(=10a+b-10b-a=10a-10b+b-a\)

\(=10\left(a-b\right)-\left(a-b\right)=\left(10-1\right)\left(a-b\right)=9\left(a-b\right)⋮9\)

( Vì \(9⋮9\) ; \(a\ge b\) ) \(\Rightarrow\overline{ab}-\overline{ba}⋮9\)

Vậy \(\overline{ab}-\overline{ba}⋮9\)

18 tháng 5 2017

Ta có:

\(\overline{ab}=10.a+b\)

\(\overline{ba}=10.b+a\)

\(=>\overline{ab}-\overline{ba}=10a+b-10b+a\)

\(=9a-9b\)

\(=9\left(a-b\right)⋮9\)

\(=>\overline{ab}-\overline{ba}⋮9\left(dpcm\right)\)

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

14 tháng 3 2017

a27+15a+a6 chia hết cho 3 

=>a27 chia hết cho 3 

   15a chia hết cho 3

     a6 chia hết cho 3

còn lại bạn tự làm!

19 tháng 10 2017

Ta có:

\(\overline{abba}=1001a+110b=11.91a+11.10b=11\left(91a+10b\right)\)

\(11\left(91a+10b\right)\) \(⋮\) 11 nên \(\overline{abba}\) \(⋮\) 11

\(\Rightarrow\) ĐPCM

19 tháng 10 2017

Ta có:

\(\overline{abba}\) = 1000a + 100b + 10b + a

\(\overline{abba}\) = 1001a + 110b

\(\overline{abba}\) = 11 . (91a + 10b)

Vậy \(\overline{abba}\) \(⋮\) 11.

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

1 tháng 12 2017

Ta có \(\overline{abba}=a.1000+b.100+b.10+a\)

\(=\left(a.1000+a\right)+\left(b.100+b.10\right)\)

\(=a.1001+b.110\)

\(=11.\left(a.91+b.10\right)⋮11\)

Vậy....

1 tháng 12 2017

abba = 1000a+100b+10b+a

          =(1000a+a)+(100b+10b)

          =1001a+110b

          =(91×11)a+(11×10)b

Vi 11chia het cho 11=> (91×11)a chia het cho 11 va (11×10)b chia het cho 11

Vay  so co dang abba se chia het cho 11

Chuc ban hoc gioi nhe Hoang Vu .👩