\(\frac{1}{101}\)+ \(\frac{1}{102}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )

1/101+1/102+....+1/200(có 100 số )

Vì 1/101>1/200

1/102>1/100

......

1/199>1/200

1/200=1/200

=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số

=>1/101+1/102+.....+1/200>1/2

7 tháng 5 2017

Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)

Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên : 

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)

10 tháng 5 2019

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)

18 tháng 7 2016

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)(50 phân số)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 phân số)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50\)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{3}\)(Đpcm)

10 tháng 8 2016

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>200.\frac{1}{300}\)

                                                               \(>\frac{2}{3}\)

10 tháng 8 2016

là sao ??

28 tháng 2 2019

Ta có

\(\frac{1}{101}>\frac{2}{3}\)

\(\frac{1}{102}>\frac{2}{3}\)

.

.

.

\(\frac{1}{300}>\frac{2}{3}\)

Vậy \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)

25 tháng 4 2017

Ta có:

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{2}\)