Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Trường hợp 1:
Nếu n=2k
Thì n.(n+5)=2k.(2k+5)
Vì 2k chia hết cho 2 nên tích n.(n+1) chia hết cho 2
Trường hợp 2:
Nếu n=2k+1
Thì n.(n+1)=2k+1(2k+1+1)
=>(2k+1)(2k+2)
Vì 2k+2 chia hết cho 2 nên tích n(n+1) chia hết cho 2
2.
\(n^2+n+1\)
\(n^2+n=n.n+n.1=n.\left(n+1\right)\)
\(\text{Vì :}n.\left(n+1\right)\text{là tích hai số tự nhiên liên tiếp nên có tận cùng là : 2,6,0}\)
\(\text{Vậy}.n\left(n+1\right)+1\text{sẽ có tận cùng là 3,7,1}\)
Vì tận cùng là 3,7,1 nên A không chia hết cho 2, không chia hết cho 5 (đpcm)
Chúc bạn học tốt!!!
1. TH1 : n là số chẵn.
\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\)
TH2 : n là số lẻ
\(\Rightarrow\left(n+5\right)⋮2\Rightarrow n\left(n+5\right)⋮2\)
Từ đó \(\Rightarrow n\left(n+5\right)⋮2\)với mọi \(n\in N\)
2. a) TH1 : Nếu n là số lẻ \(\Rightarrow n^2\)là số lẻ \(\Rightarrow\left(n^2+2\right)⋮2\)
1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2 (1)
TH2 : Nếu n là số chẵn \(\Rightarrow n^2\)là số chẵn \(\Rightarrow\left(n^2+2\right)⋮2\)
1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2 (2)
Từ (1) và (2) \(\Rightarrow A\)không chia hết cho 2 với mọi \(n\in N\)
b)
A = n2 + n +1
= n . n + n + 1
= n.(n+1)+1
n.(n+1) là 2 số tự nhiên liên tiếp
mà chữ số tận cùng cửa tích 2 số tự nhiên liên tiếp là : 0;2;3
=> n(n+1) + 1 có chữ số tận là : 1;3;4
=> A ko chia hết cho 5 với mọi n
=> A ko chia hết cho 15 với mọi n
A=n^2+n+1
=n^2+2n.1/2+(1/2)^2-(1/2)^2+1
=(n+1/2)^2+3/4
ta có (n+1/2)^2 không chia hết cho 2015 với mọi stn n (1)
3/4 không chia hết cho 15 (2)
từ (1),(2) => (n+1/2)^2+3/4 không chia hết cho 15 với mọi stn n
=> n^2+n+1 không chia hết cho 15 với mọi stn n
chia hết cho 15 tức là chia hết cho 3 và 5
n^2 +n+1= n(n+1)+1
mà n(n+1) là số tự nhiên liên tiếp nên chia hết cho 3,5
=> n(n=1)+1 ko chia hết ho 3 và 5
tức là chia hết cho 15
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
**** nhe Nguyễn Thị Giang
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn
=>A=n2+n+1 là số lẽ không chia hết cho 2
*khi n là số chẳn=> n2 là số chẳn ; n+1 là số lẻ
=>A=n2+n+1 là số lẻ không chia hết cho 2
Vậy A không chia hết cho 2
b)Ta có A=n2+n+1=n.(n+1)+1
Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:
=>n.(n+1) có thể tận cùng là 0;2;4;6;8
Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5
Với n.(n+1)=4
Ta lại có : 4=1.4=4.1=2.2
=>n.(n+1) khác 4
Vậy A không chia hết cho 5
Vua của Athanor :)) Có chép mà ko bt chép,à mà ăn xong ko trả ơn à.
Chỉ cần cm \(n^2+n+1=n\left(n+1\right)+1\) không chia hết cho 5 là được.
\(n\left(n+1\right)\) chỉ có thể tận cùng là 0;2;6;8
Khi đó \(n\left(n+1\right)+1\) chỉ có thể tận cùng là 1;3;7;9 ko chia hết cho 5.
=> n(n+1)+1 không chia hết cho 15.