Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(P=2013^0+2013^1+2013^2+...+2013^{2017}\)
\(\Rightarrow2013P=2013.\left(2013^0+2013^1+2013^2+...+2013^{2017}\right)\)
\(2013P=2013^1+2013^2+2013^3+...+2013^{2018}\)
\(\Rightarrow2013P-P=2012P=\left(2013^1+2013^2+2013^3+...+2013^{2018}\right)-\left(2013^0+2013^1+2013^2+...+2013^{2017}\right)\)
\(2012P=2013^{2018}-2013^0=2013^{2018}-1\)
\(\Rightarrow2012P+1=2013^{2018}-1+1=2013^{2018}\)
vậy \(2012P+1=2013^{2018}\)
Với n = 1, ta có
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6
Giả sử khẳng định đúng với n = k, tức là:
k^3 + 9k^2 + 2k chia hết 6
Đặt k^3 + 9k^2 + 2k = 6Q
Ta sẽ CM khẳng định đúng với n = k + 1, ta có:
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1)
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12
= 6Q + (3k^2 + 21k) + 12
= 6Q + 3k(k + 7) + 12
= 6Q + 3k[(k + 1) + 6] + 12
= 6Q + 3k(k + 1) + 6.3k + 12
Vì k và k + 1 là 2 số nguyên liên tiếp nên:
k(k + 1) chia hết cho 2
=> 3k(k + 1) chia hết cho 3.2 = 6
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6
Vậy theo nguyên lý quy nạp ta chứng minh được
n^3 + 9n^2 + 2n chia hết 3
Ta thấy
3^2017 > 3^2015
5^2015/3 > 1^2013/3
5 >1
Suy ra A = 3^2017 + 5^2015/3 + 5 > B= 3^2015 + 1^2013/3 + 1
Vậy A>B
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\) (đpcm)
\(2014^{2015}+2013^{2015}+2012^{2015}+2017^{2016}\)
\(=2014^{4.503}.2014^3+2013^{4.503}.2013^3+2012^{4.503}.2012^3+2017^{4.503}.2017^3\)
\(=\left(...6\right).\left(...4\right)+\left(...1\right).\left(...7\right)+\left(...6\right).\left(...8\right)+\left(...1\right).\left(...3\right)\)
\(=\left(...4\right)+\left(...7\right)+\left(...8\right)+\left(...3\right)\)
\(=\left(...2\right)\)
Vậy chữ số tận cùng là 2.
Ta có 0,7.(20132017+20172013)=7/10.(20132017+20172013)
Để số này là số tự nhiên thì \(2013^{2017}+2017^{2013}⋮10\)
Ta có 20132017=(20134)504+1=.....1504.2013=....1.2013
=>20132017 tận cùng là 3
20172013=(20174)503+1=....1503.2017=...1..2017
=>20172013 tận cùng là 7
=> 20132017+20172013 tận cùng là 0, chia hết cho 10
Vậy số ở đề bài cho là 1 số tự nhiên