K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2

Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2

 => (n+3) (n+6) chia hết cho 2 với mọi STN n

23 tháng 7 2018

Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều . 

Thank you very very much .

Kết bạn nhé .

15 tháng 10 2018

xét n là số lẻ

=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2

xét n là số chẵn 

=.(n+12) là số chẵn  =>(n+3) (n+12) chia hết cho 2

15 tháng 10 2018

rồi bạn

28 tháng 8 2015

a) Theo đề bài : ab = 3ab

\(\Rightarrow\) 10a + b = 3ab

\(\Rightarrow\) 10a + b chia hết cho a

\(\Rightarrow\)bchia hết cho a

 

14 tháng 10 2016

bí thì phải suy nghĩ 

5 tháng 10 2017

Bài 1:

1002013+2  = 10000000...000+2

                 =  1000..0002(chia hết cho 3 vì tổng các chữ số chia hết cho 3)

Vậy 1002013+2 chia hết cho 3

Bài 2:

  Nếu n+5 là số chẵn thì n + 6 là số lẻ 

chẵn nhân lẻ luôn bằng chẵn

  Nếu n +5 là số lẻ thì n+6 là số chẵn

lẻ nhân chẵn cũng bằng chẵn

 Vậy (n+5).(n+6) là 1 số chẵn

Xét các TH:

-TH1:\(n=2k\left(k\inℕ\right)\) 

\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)

-TH2:\(n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)

Xét \(\(2\)\) trường hợp
Trường hợp 1:

+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))

Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:

+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))

Theo bài ra ta có:

\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)

\(\(=2.\left(n^2+7n+3\right)⋮2\)\)

\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)

_Minh ngụy_