Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
5 chia hết cho 5
52 chia hết cho 5
....
530 chia hết cho 5=> A chia hết cho 5(1)
mặt khác: A=5+52+53+...+530=5(1+5)+53(1+5)+...+529(1+5) chia hết cho 6(2)
do (5;6)=1 nên từ (1) và(2) => A chia hết cho 30
số số hạng của S là (20-1)/1+1=20 ( số hạng)
có 5+25=5+5^2=30
chứng tỏ rằng giá trị của biểu thức A = 5 + 52 + 53 + ... + 520 là bội của 30
vì 20/2=10( nhóm) nên ta có
S = (5+5^2) + ( 5^3 +5^4)+......+ (5^19 + 5^20)
S= 30 +5^2(5+5^2)+.....+5^18(5+5^2)
S=30.1+5^2.30+....+5^18.30
S=30(1+5^2+...+5^18)
vì 30 chia hết cho 30 và 1+5^2 +....+5^18 thuộc Z
suy ra S chia hết cho 30
suy ra S là bội của 30( đpcm)
vậy bài toán đã được chứng minh
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)
=> A là bội của 3
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
a) \(B=3+3^3+3^5+...+3^{29}\)
\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)
\(\Rightarrow B=\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)
\(\Rightarrow B=273+...+3^{24}.273\)
\(\Rightarrow B=273.\left(1+...+3^{24}\right)⋮273\)
Vậy B là bội của 273.
b) \(A=5+5^2+...+5^7+5^8\)
\(\Rightarrow A=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(\Rightarrow A=\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(\Rightarrow A=30+...+5^6.30\)
\(\Rightarrow A=30.\left(1+...+5^6\right)⋮30\)
Vậy A là bội của 30.
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
A = 5 + 52 + 53 + .. . + 58
A = (5 + 52)+ (53 +54)+ .. . +(57+ 58)
A= 30+52(5+52)+....+56(5+52)
A=30.(52+54+56) chia hết cho 30 => A là bội của 30
A=5+52+53+........+58
A=(5.1+5.5)+(53.1+53.5)+......+(57.1+57.5)
A=5(1+5)+53(1+5)+.....+57(1+5)
A=5.6+53.6+....+57.6
A=5.6(1+52+54+56)
A=30(1+52+54+56)
=>Achia hết cho 30 => A là bội của 30
\(A=5+5^2+5^3+...+5^{20}\)
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{19}+5^{20}\right)\)
\(\Rightarrow A=\left(5+25\right)+5^2.\left(5+5^2\right)+...+5^{18}.\left(5+5^2\right)\)
\(\Rightarrow A=30+5^2.30+...+5^{18}.30\)
\(\Rightarrow A=\left(1+5^2+...+5^{18}\right).30⋮30\)
\(\Rightarrow A⋮30\)
\(\Rightarrow A\) là bội của 3
Vậy...
cậu giải cái j thế nhở