Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2710 + 329 + 914
= ( 33 )10 + 329 + ( 32 )14
= 330 + 329 + 328
= 328 . ( 32 + 3 + 1 )
= 328 . 13 \(⋮\)13
Vậy 2710 +329 +914 chia hết 13
2710 + 329 + 914 chia hết cho 3 (Các số hạng đều chia hết cho 3)
a) 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 chia hết cho 55
b) 817 - 279 + 329 = (34)7 - (33)9 + 329 = 328 - 327 + 329 = 326(32 - 3 + 33) = 326.33 chia hết cho 33
c) 812 - 233 - 230 = (23)12 - 233 - 230 = 236 - 233 - 230 = 230(26 - 23 - 1) = 230.55 chia hết cho 55
d) 109 + 108 + 107 = 107(102 + 10 + 1) = 107.111 mà 107 chia hết cho 5(vì tận cùng là 0) => 109 + 108 + 107 chia hết : 111.5 = 555
e) 911 - 910 - 99 = 98(93 - 92 - 9) = 98.639 chia hết cho 639 =>\(\frac{9^{11}-9^{10}-9^9}{639}\in N\)
f) 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45.
a) 76+75-74
= 74(72+7-1)
= 74 . 55 chia hết cho 55 (đpcm)
b) Thôi tôi đi ngủ đây nhớ k cho tôi
\(81^7-27^9-9^{13}=3^{4.7}-3^{3.9}-3^{2.13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.81.5=405.3^{22}\)
Chia hết cho 405 => ĐPCM
Ta xét các trường hợp sau:
+ TH1: abab=1⇔⇔a=b Thì a+2b+2a+2b+2=abab=1
+ TH2: abab<1 ⇔⇔a<b⇔⇔a+2<b+2
a+2b+2a+2b+2 Có phần bù tới 1 là: b−ab+2b−ab+2
abab có phần bù tới 1 là b−abb−ab
Mà b−ab+2b−ab+2<b−abb−ab nên a+2b+2a+2b+2>abab
+TH3: abab>1 ⇔⇔a>b ⇔⇔a+2>b+2
a+2b+2a+2b+2 có phần thừa so với 1 là a−bb+2a−bb+2
abab có phần thừa so với 1 là a−bba−bb
Mà a−bb+2a−bb+2<a−bba−bb nên a+2b+2a+2b+2<abab
Sửa lần cuối bởi BQT: 21 Tháng tư 2014
Ta có : \(81^7\)-\(27^9\)+\(3^{29}\)=\(\left(3^4\right)^7\)-\(\left(3^3\right)^9\)+\(3^{29}\)=\(3^{28}\)-\(3^{27}\)+\(3^{29}\)=\(3^{27}\)\((\)\(3\)-\(1\)+\(3^2\)\()\)=\(3^{27}\)x\(11\)=\(3^{26}\)x\(3\)x\(11\)=\(3^{26}\)x\(33\)\(⋮\)\(33\)\(\Rightarrow\)\(ĐPCM\)
Ta có : \(27^{10}+3^{29}+9^{14}=\left(3^3\right)^{10}+3^{29}+\left(3^2\right)^{14}\)
\(=3^{30}+3^{29}+3^{28}\)
\(=3^{28}\left(3^2+3+1\right)=3^{28}\left(9+3+1\right)\)
\(=3^{28}\cdot13⋮13\left(đpcm\right)\)