Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{200}{400}=\frac{1}{2}\)
=> điều phải chứng minh.
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
1/201 + 1/202 + ... + 1/400 > 1/400 x 200
1/201 + 1/202 + ... + 1/400 > 1/2
Vậy 1/201 + 1/202 + ... + 1/400 > 1/2
Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :
\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )
\(A< \frac{1}{400}\times200\)
\(A< \frac{200}{400}\)
\(A< \frac{1}{2}\)( Điều phải chứng minh )
Đặt Q =\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{400}{401}\)
Dễ thấy: P < Q
Mặt khác:
P.Q = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{399}{400}.\frac{400}{401}=\frac{1.2.3....399.400}{2.3.4...400.401}\)
=\(\frac{1}{401}< \frac{1}{400}=\left(\frac{1}{20}\right)^2\)
Mà \(P^2< P.Q< \left(\frac{1}{20}\right)^2\Leftrightarrow P< \frac{1}{20}\)
Ta có : \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
(\(200\)số hạng)
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{200}{400}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{400}>\frac{1}{2}\left(đpcm\right)\)
Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2