K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Đặt\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)\(>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(mỗi cái trong ngoặc là một trăm phân số)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\left(\frac{1}{200}\right).100+\left(\frac{1}{300}\right).100\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A>\frac{5}{6}\)

Mà 5/6>2/3=>A>2/3

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Vì \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{103}+.....\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}\right)\)

Tự làm tiếp nhé !!!

 
tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính...
Đọc tiếp

tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900tính tích A =3/4.8/9.15/16...899/900

10

bn ơi mik hỏng mắt sau khó đọc bài của bn òi

29 tháng 5 2021

bạn chép phạt à

24 tháng 3 2018

Tra lời:

Ta có:

1/101➢1/300+1/102➢1/300+1/103➢1/300+1/104➢1/300+.....+1/299➢1/300

=1/101+1/102+1/103+...1/299➢199/300

=1/101+1/102+1/103+...1/299+1/300➢199/300+1/300

=200/300=2/3.

Note: ➢ là dau lớn do nhe. Nho tick cho minh nha😊😉

28 tháng 6 2016

\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\). . . . \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{2}{3}\)\(\ge\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(=\)\(\frac{200}{300}\)\(=\)\(\frac{2}{3}\)

do \(\frac{1}{101}\)..... \(\frac{1}{300}\)có 200 số

\(\Rightarrow\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)..... \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{1}{300}\)\(\times\)200

\(\ge\)\(\frac{2}{3}\)

23 tháng 3 2016

A=1.3/22.2.4/33.3.5/42...29.31/302

suy ra A = (1.2.3.....29/2.3.4......30).(3.4.5.......31/2.3.4......30)

          A =1/30.31/2=31/60

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...

4 tháng 4 2018

- Tham khảo ở đây đi : Câu hỏi của Nguyễn Thị Bích Phương - Toán lớp 6 | Học trực tuyến

5 tháng 5 2018

Đặt A=\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\)

\(\dfrac{1}{101}\)>\(\dfrac{1}{102}\)>\(\dfrac{1}{103}\)>...>\(\dfrac{1}{300}\)

=>(\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{201}\)+\(\dfrac{1}{202}\)+\(\dfrac{1}{203}\)+...+\(\dfrac{1}{300}\)) > (\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+...+\(\dfrac{1}{300}\)) =>\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) > \(\dfrac{1}{200}\).100 +\(\dfrac{1}{300}\) .100

=> A > \(\dfrac{1}{2}+\dfrac{1}{3}\)

=> A > \(\dfrac{5}{6}\)\(\dfrac{5}{6}\)>\(\dfrac{2}{3}\)=> A > \(\dfrac{2}{3}\) Vậy \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) >\(\dfrac{2}{3}\)