Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 số bất kì luôn viết = ( số chia hết cho 9 ) + ( tổng các chữ số của nó ) :123 = 13 .9 + ( 1+2+3)
11.....1 = 9 k + ( 1+1+.........1) = 9k +n
a) 10n +18n = 10n -1 + 18n +1 = 99...9(n c/s9) + 18n +1 = 9. 11...1 (n c/s 1) +18n+1 = 9 .( 9 k + (1+1+...+1 ) )+ 18n -1
= 9 ( 9k +n) +18n +1 = 81k + 27n +1 chia cho 27 dư 1
( đề thiếu - 1 nhé )
Câu sau tương tự
b) 10n+8=100..0+8=100...08 có tỏng các chữ số là 9 nên chia hết cho 9
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...
MK DAM CHAC BA CO NAY HON LOP 6
Ta có:
\(10^n+72n-1=10^n-1+8.9.n=\left(10-1\right)\left(10^{n-1}+10^{n-2}...+1\right)+9.8.n\)
\(9\left(10^{n-1}+10^{n-2}+...+1\right)+9.8.n=9\left(8n+10^{n-1}+10^{n-2}+...+1\right)\)
Luôn luôn chia hết cho 9